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Abstract

In this article, we are interested in uniqueness results for viscosity solutions
of a general class of quasilinear, possibly degenerate, parabolic equations set in
IRN. Using classical viscosity solutions’ methods, we obtain a general comparison
result for solutions with polynomial growths but with a restriction on the growth
of the initial data. The main application is the uniqueness of solutions for the
mean curvature equation for graphs which was only known in the class of uniformly
continuous functions. An application to the mean curvature flow is given.
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1 Introduction

This article is a continuation of the program started in [3] (see [2] for an introductory
paper) which aim is the study of the uniqueness properties for unbounded viscosity so-
lutions of quasilinear, possibly degenerate, parabolic equations set in JRY. This program
was motivated by the following surprising result of Ecker and Huisken [12] : for any initial

data uy € W,b>°(IRN), there exists a smooth solution of the equation

ou (D*uDu, Du)
OU Ay 4 \Muliu, D)
ot ST T Dap
u(z,0) = ug(z) in RN .
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=0 in R" x (0, +00),

(1)




Here and below the solution u is a real-valued functions, Du and D?u denote respectively
its gradient and Hessian matrix while |- | and (-, -) stand for the classical Euclidean norm
and inner product in IR".

The very non-standard feature of this result is that no assumption on the behavior
of the initial data at infinity is imposed and therefore the solutions may have also any
possible behavior at infinity.

A natural question is then whether such a solution is unique or not. It is a very
intriguing and challenging question since one has to take in account the lack of restriction
on the behavior of the solutions at infinity, an unusual fact. As far as we know, this
question in its full generality is still open in IRY for N > 1 while for N = 1, the result
was proved independently and by different methods by Chou and Kwong [8] and Barles,
Biton and Ley [4].

In a series of papers ([3], [4] and [5]), we address the more general question of the
uniqueness of unbounded viscosity solutions, not only for (1) but also for more general
quasilinear degenerate parabolic equations like

% —Tr [b(l‘;t, DU)DQU} + H(l’,t,u, DU) =0 in BN X (O’T)’
u(x,0) = ug(x) in RV,

(2)

where T > 0 is any positive constant and b is a function taking values in the set of
nonnegative symmetric matrix and H € C(IR x [0,T] x IR x IR").

When one wants to prove such uniqueness results, the first key difficulty is the one
we point out above i.e. the a priori unboundedness of solutions or more generally the
fact that solutions may have any behavior at infinity. But the gradient dependence in
the diffusion matrix b above is also a major difficulty: because of that, it does not seem
possible to obtain uniqueness results through some kind of linearization procedure and
even the uniqueness of smooth solutions is far from being obvious, except if one imposes
restrictions on D?u at infinity, a type of assumptions that we want to avoid. For results
obtained by linearization procedure, we refer the reader for example to Crandall and
Lions [10], Ishii [16] or Ley [18] where the uniqueness of solutions of first-order equations
were obtained using “finite speed of propagation” type properties, to Barles [1] where
optimal uniqueness results for solutions with exponential growth of (stationary) first-
order equations were proved or to Barles, Buckdahn and Pardoux [6] for solutions with
exponential growths of a system of Hamilton-Jacobi-Bellman type Equations.

To the best of our knowledge, the most general uniqueness results for quasilinear equa-
tions —i.e. for equations involving the above mentioned difficulty on the Du-dependence —
concern only uniformly continuous viscosity solutions : we refer the reader the “Users’guide
of viscosity solutions” of Crandall, Ishii and Lions [9] and to Giga, Goto, Ishii and Sato
[15] for results in this direction.

The aim of this article is to push as far as possible the classical arguments used for
proving comparison results for viscosity solutions in order to obtain such results for the



largest possible class of quasilinear equations and initial data.

In the general comparison theorem we are able to prove by using this approach (see
Theorem 2.1), the conditions we have to impose on the equation and the behavior of solu-
tion at infinity, namely to have a polynomial growth, seem rather reasonable. Surprisingly
the main restriction concerns the initial data which has to satisfy the following, rather
unnatural, condition: there exists a modulus of continuity m! and 0 < v < (1 +/5)/2
such that, for any z,y € RV,

|uo() —uo(y)| < m ((1+ |2 + [y))"|z —yl) - (3)

Unfortunately such type of restriction seems to be an unavoidable artefact of this method.
We do not know how optimal is this result and in particular the limiting exponent
(14++/5)/2. In fact, since this result applies not only to the mean curvature equation
(1) but also to a large class of degenerate and nondegenerate equations, we do not think
that this exponent could have a geometrical interpretation. On the other hand, we believe
that the result is true for any v but we were unable to prove it.

Crandall and Lions [11] obtained related results under similar assumptions but for
fully nonlinear pdes whose Hamiltonians depend only on the second derivatives of the
solution u. Their techniques do not apply to our case. Comparing to the existence result
for the mean curvature mentioned above, condition (3) may appear restrictive but we
point out that our proof works under a general structure assumption on b and not only
for the mean curvature equation. We refer to Section 2 for a precise statement of the
assumptions on b and H and to Section 3 for a detailed treatment of the mean curvature
equation for graphs.

Unfortunately the proof of this comparison result is very technical (see Section 4) and
relies on the use of a tricky test-function that, as we already mentioned it above, we tried
to build in an optimal way.

This result yields a comparison principle between semicontinuous sub- and supersolu-
tions which is a key tool for obtaining existence results through the Perron’s method (see
[17], [9], etc.). It therefore allows us to show such an existence result of solutions with a
suitable growth for (2).

The paper is divided as follows: in the next section, we start by setting the problem
and the assumptions we will use. Then we state a comparison principle (Theorem 2.1)
which is the main result of the paper. As an immediate consequence, we obtain the ex-
istence and uniqueness of a continuous viscosity solution to our problem (Corollary 2.1).
We end this section with some examples of equations which are included in our study.
Section 3 deals with the fundamental example of the mean curvature equation for graphs.
We provide an application of the uniqueness theorem to the mean curvature flow of entire
graphs. The last sections 4 and 5 are devoted to the proofs of the main theorems.

A function m : R* — IR* is said to be a modulus of continuity if m(04) := lims_,0, m(s) = 0 and
m(t + s) < m(t) + m(s) for any s,t € R*.
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2 Statement of the results and examples

Before stating the problem and our results, we introduce some notations. In the sequel,
My s is the set of N x M-matrices and Sy (respectively Sy;) denotes the set of the
symmetric (respectively symmetric nonnegative) matrices. For every A € My, AT
denotes the transpose of A. Finally, we introduce the space Cpy of locally bounded,
possibly discontinuous, functions on IRY x [0, T] which have a polynomial growth with
respect to the space variable. More precisely, u € Cply if there exists a constant & > 0
such that

t
uz,) — 0, uniformly with respect to t € [0, T].
1+ |a:|k |z]—+o0

We will use the following assumptions for equation (2) :

(H1) There exists a continuous function o : RY x [0, T]x IRY — My,)s and some constant
C' such that

b(z,t,p) = o(z,t,p)o(x,t,p)",
o (2,t,p) — oy, t,p)|| < Clz —yl,

lp—q|

o(z,t,p) —o(x,t,q §C~'7.
lote,t.p) = ot t,0)| < O

(H2) The function H is continuous on RN x [0,T] x IR x RN, u+ H(z,t,u,p) is nonde-
creasing for every (z,t,p) and there exists a modulus of continuity m such that, for every
z,9,p,q € RN ,u € IR and t € [0, +00),

|H (x,t,u,p) = H(y, t,u,p)| < ((1+ [p))lz = yl)

and
|H(x,t,u,p) _H(xatauaq” < ﬁl((l + |x|)|p_Q|) .

Finally we say that a function w : RN — IR satisfies the assumption (H3-w)(v) if there
exists a modulus of continuity m such that, for every z,y € R",

w(@) —w(y)] <m ((1+ ||+ |y))"]z —yl) -

Our main result is the following



Theorem 2.1 Assume that (H1) and (H2) hold and let u € Cpoy (respectively v €
Cpoly) be a upper-semicontinuous (respectively lower-semicontinuous) viscosity subsolution
(respectively viscosity supersolution) of (2). If

u(z,0) < up(r) <w(z,0) in RV,
where ug s a function which satisfies (H3-ug)(v) with 0 < v < (1 ++/5)/2, then
u<v in RY x[0,T].
The proof is postponed to Section 4. An immediate consequence of Theorem 2.1 is the

Corollary 2.1 Assume that (H1) and (H2) hold and let ug be a function which satisfies
(H3-up)(v), with0 < v < (14++/5)/2. In Cpoy, there exists a unique continuous viscosity
solution u of (2). Moreover, there exists C' > 0 such that

lu(z,t)] < C(1 + |z|"th).

The existence of a solution is a consequence of the comparison result by using Perron’s
method. A priori, this existence results takes place in the class of functions with polyno-
mial growth but we prove that the solution inherits the growth of the initial datum. The
proof will be given in Section 5.

Remark 2.1 : Concerning the existence of classical solutions to these equations, we refer
to Chou and Kwong [8] who provided W local bounds for the solutions of a large class
of quasilinear equations without growth restriction on the initial data. The existence of a
smooth solution to the mean curvature equation for graphs, also in the case when there
is no restriction on the initial data, was first shown by Ecker and Huisken [12] and Evans
and Spruck [14] (see also [3]).

Before giving examples of equations to which these results apply, let us make some
comments about the assumption (H1) and (H3-w)(v), (H2) being a natural and classical
assumption. In (H1), the two first conditions are classical ; note that the first one implies
that the equation is degenerate parabolic. Of course, the third one is the most interesting
since it concerns the behavior of b in the gradient variable and we recall that it is a key
difficulty here. We have chosen this type of assumption for ¢ in p because this is the type
of dependence we have for (1). We have decided not to consider in this paper different
choices of p—dependence in order to keep the length of this paper reasonable. They would
lead to results with, in particular, different limitation on the growth of the initial data.

It is anyway worth pointing out that, with such type of assumptions on o, there is no
hope to prove a better result than a comparison principle in C,1, or for solutions with
exponential growth: indeed the heat equation satisfies (H1). In order to go further, one
has to take in account some degeneracy of the equation (typically o(p)p — 0 as |p| — +00)
but our proof does not see at all this kind of property.



Notice that the assumptions on ¢ yield the existence of a positive constant C' such
that, for every (x,t,p) € RN x [0,T] x RV,

lo(z,t,p)l] < C(1 +[z]), (4)

a key fact in the proof.
A more readable version of assumption (H3-w)(v) on the initial data of the equation
is when w is locally Lipschitz continuous, then (H3-w) holds if

|Dw(x)] < C(1+|z]") for almost every x € IR".

We end this section by a list of equations for which the previous results apply.

1. Equations of the form

ou Au

—_— = t)———— + H(x,t Du) = 0.
ot ~ T (@t Du)

The above results apply when a > 0, H satisfies (H2) and a € C(IR" x [0,+00)) is a
bounded nonnegative function such that y/a is Lipschitz continuous in 2, uniformly with
respect to ¢. Since it is not obvious, we check the third statement of (H1). Without loss
of generality, we can suppose a = 1, the dimension of the space N =1 and ¢ > p > 0.

We have
1 P — 2 a/2
U(P)—U(Q)ZW(1—<1+1+q2 '

From the inequality 1 — (1 + 2)*/? < —z for —1 < z < 0, we get

1 a—p)p+a) _ 2
1_|_p2)a/2 1+q2 — 1+q2

o(p) —o(q) < ( »—q).
Since we assumed 0 < p < ¢, we can find a constant C' independent of p, ¢ such that
2q/(1+ ¢*) < C/(14+p+ q). It gives the conclusion.
2. Non geometric curvature flow:
ou ) Du

— —div——r——+==0
ot 1+ |Dul?

3. Consider
ou Du ® Du 5



If A is a bounded continuous function from RM x [0,+o00) into My, Lipschitz in x
(uniformly in ¢) and H satisfies (H2), then our results apply. In particular,

ou Du
— —a(x,t)\/1+ |Dul? | div——— +c(z,t) | =0
o7 —ale.)VIT] |( 5 el ))

fulfills the assumptions as soon as the continuous functions a, ¢ are bounded, a is nonneg-
ative and /a, ¢ are Lipschitz continuous in z uniformly in ¢. If @ = 1 and ¢ is constant,
then we recognize the geometric eikonal equation. The mean curvature equation for graphs
(a =1 and ¢ = 0) is studied in great details in the following section.

4.
ou

— — sup Tr[by (2, t, Du)D*u] + sup Hg(z,t, u, Du) = 0,
Ot aca BeB
when (H1) holds for b, and (H2) holds for Hsz with constants independent of «, /5.
5. With minor adaptations in the proof of the comparison result we can deal with
ou
ot
under (H1) and (H2) for a nondecreasing nonnegative function f which satisfies, for
every z,2' € IR,

(Tr[b(z,t, Du)D?*u]) + H(z,t,u, Du) =0,

f(z) = f(Z) < Cl2" = 2|7,
with a € [0, 1].

3 Application to the mean curvature equation

Our main motivation is to prove some uniqueness results for the mean curvature equation
for graphs. In this section, we recall some facts about this equation and show that it
enters the framework of Theorem 2.1. We then apply these results to the mean curvature
flow for entire graphs in RN,

We can write the mean curvature equation in different forms. To follow the notations
of the previous section, we will write it as

ou

5 Tr [be(Du) D*u] =0, (5)
where, for every p € R,
PP
be(p) =T — : 6
B =1-1p (6)

The same equation is often written

ou (D*>uDu, Du)

— — 22 —0 in RY x (0 7
o T T Dup n 7 x (0, +00) ™)



or in divergence form

ou Vu
— — 1+ |Vul2div | —— | =0. 8
ot [Vl V( 1+|Vu|2> ®)

The operator b, defined by (6) maps R" into Sy;. For every p € IRY, we can define
the positive symmetric square root be/ 2(p) of be(p) € Sy The following lemma provides
some properties of be/%.

Lemma 3.1 For every p € RV,
1

» & p.
V1I+pP(1+ 1+ p]?)

Moreover, b};/2 is bounded and Lipschitz continuous in IR" ; there exists a positive constant
C' such that, for every p,q € IR,

b?(p) =1 —

Clp —q
bL2(p) — b1/2(g)|| < — 221 9

Proof of Lemma 3.1. We first compute b/, For every ¢ € (Spanp)*, b.(p)g = ¢ and
be(p)p = p/(1+|p|?). Tt follows that we can look for be’? in the form by (p) = I—f(p)pp.
Then, an easy calculation gives the result. Looking at the formula, it is clear that be'? s
continuous and bounded.

To check (9), we write

15:2(p) = b ()l = IIf(@a®q— fp)p &l
= llg® (¢ —p)flq9) + (¢ —p) @ pflg) +p@p(f(q) — f(p))ll
< (lglf (@) + Iplf (@)lp — al + [pI*|f () — f(9)]-

Without loss of generality, we can take |¢| > |p|. On the one hand,

2lq| < 2

VI[P 4+ 1+ g?) — 1+ /14]q¢/?

9 9 4
< — < .
L+gl = 1+ 5(pl + 1) — 1+ [pl+ gl

On the other hand, by setting g(p) = /1 + |p|?,

(@) — f)] < [pPf®)f(a)lgp)(1+9(p) —g(a)(1+g(q))|
< pl*f(p)f(q) |1+ g(p) + 9(a)| lg(p) — 9(q)].

lqlf(q) + Iplf(q) < 2|qlf(g) <

(10)



But a straightforward calculation shows that |g(p) —g(¢)| < |[p—¢| and that the application

(. q) = pI*f ) f (@)1 + g(p) + g(a)|(1 + [p| + |a])

is continuous and bounded on the set {(p,q) € IR*N : |p| < |q|} thus there exists a
constant C; > 0 such that for every p,q € R", |p| < |q|, we have

1)) 1+ 900) + 9(@)llatr) — o(0)| < (L0 (1)

Combining (10) and (11), we obtain the result with C' = 4 + C}. O

Thanks to the previous lemma and the existence of a smooth solution to (7) (cf. [12],
[14] and [3]) we get

Theorem 3.1 Assume that ug € C(IRN) satisfies (H3-ug)(v), with 0 < v < (1 ++/5)/2.
Then (7) (or equivalently (5) or (8)) has a unique solution u € C(IRN x [0,400)) N
C>®(IRN x (0,+00)) in Cpoly-

We turn to a geometrical application to the so-called level-set approach to the generalized
evolution of hypersurfaces by their mean curvature. This method, introduced for numer-
ical computations by Osher and Sethian [19], was developed theoretically by Evans and
Spruck [13] and Chen, Giga and Goto [7].

Let us recall briefly the level-set approach in the case of the mean curvature motion
of entire graphs. We consider the graph of the initial datum uy € C(IR) of (7) as an
hypersurface Ty = {(z,y) € RN x IR : ug(x) = y} of RN*'. Define Qy = {(x,y) € RN *':
up(z) < y}. We take a uniformly continuous function vy : IRN ™! — IR such that

Do = {(z,y) € RNt wy(x,y) =0} and Qo = {(z,y) € RV :vo(x,y) >0} (12)

(choose the signed-distance to [y for instance). Next, we consider a function v : RN x
(0,4+00) — IR such that v(z,u(x,t),t) = 0 where u is a solution of (7). Formally, v has
to satisfy the well-known geometrical mean curvature equation
ov Aw 4 (D?*vDv, Dv)
ot | Dv|?
v(--0)=vy in RNt

in RN x (0,7),

This equation admits a unique viscosity solution v € UC(IRN*' x [0, +00)) for every
initial datum vy, € UC(IRM '), where UC' denotes the uniformly continuous functions.
Moreover, the level-set approach works: it means that we can define, for every ¢ € [0, T,

Ty={(z,y) € RV :v(z,y,t) =0} and Q = {(z,y) € RV :v(z,y,t) > 0};



the sets (I';); and (€2;); depend only on the initial sets 'y and €y but not on the choice
of vg. The family (T';); is called the generalized evolution by mean curvature of the graph
[y and Ty is called the front. A natural issue is the connection between this generalized
evolution and the classical motion by mean curvature of the graph of uy. Note that I'; is
defined as the 0-level-set of a uniformly continuous function; it may be very irregular in
general and can even develop an interior in IRN¥*!. In our context, we have

Theorem 3.2 If ug € C(IRN) satisfies (H3-ug)(v), with 0 < v < (1 ++/5)/2, then, for
every t € [0,T], the set Ty is a entire smooth graph, namely

Ty ={(z,y) € R""" 1y = u(z, 1)},

where u is the unique smooth solution of (7) with initial datum uy. Moreover, the evolution
of Iy agrees with the classical motion by mean curvature in the sense of the differential
geometry.

Proof of Theorem 3.2. From [3], we know that, if we start with an hypersurface T’y which
is an entire continuous graph in IRY x IR, then, for every ¢ € [0, T7,

Ty ={(z,y) € R™" 1w (2,t) <y <u'(z,1)},

where u~ and u™ are respectively the minimal and the maximal (discontinuous) viscosity
solution of (7). In the special case of the mean curvature equation, we proved that the
boundary of the front I'; is smooth. It follows that «~ and u™ are smooth. At this step,
we aim at applying Theorem 3.1 to show that u~ = u*. To do it, we need to know that
u~,ut € Cpoly. Note that Corollary 2.1 is not sufficient because we suppose, a priori, that
the solution has a polynomial growth. To overcome this difficulty, we invoke a L local
bound for (7) (see [3]): there exists a constant C' such that, for every (z,t) € R" x [0, T],

lu(x,t)| < max{|uo(y)| + V20t : y € B(x,V2Ct)}.

From (H3-u,)(v), there exists a positive constant C' such that |ug(y)| < C(1+ |y|'*). It
follows

lu(z,t)| < O(1 + (Jz] + V2CH)*) + V20T,

which proves the claim.

It implies u~,u™ € Cpoy and from Theorem 3.1, we obtain v~ = u' := u. Finally,
['; = Graph(u(-,t)) is a smooth submanifold of IR¥*! (in particular, T; never fattens). In
this case, the generalized evolution fits in with the classical evolution by mean curvature
(see Evans and Spruck [13] and [14] for the agreement with an alternative generalized
motion). O

We refer to [3] and [5] for some more general geometrical motions. In these works, we

associate a geometrical motion to some quasilinear equations of the type (2) for which
the above techniques apply.

10



4 Proof of Theorem 2.1

1. We argue by contradiction assuming that there exists (7,#) € IRN x [0, T] such that
(13)

u(z, 1) > v(7,1)

For e,a > 0,p > k > max{2,v + 1} to be chosen later on, we introduce the functions
defined by : for every 2,3y’ € RY,

K@) =1+, oY)

_ |y'p|p and  U(e,y') = K (") (o) + a).

Then we consider the test-function given by : for every z,y € IRY,
O(w,y,t) =" U(z +y, 2 —y) +nt,

where L,n > 0.

2. The first step of the proof is the

Lemma 4.1 Under the assumptions of Theorem 2.1, there exists a constant C' > 0 such
that, for any v € RY and t € [0,T],

u(z,t) < O+ |zt and wv(z,t) > -C(1+ |z|"™). (14)
Moreover, if p >k > v+ 1, the

sup {U(l‘,t) —U(y,t)—q)(l‘,y,t)}
(z,y,t)€(IRN)2 x[0,T]
is finite and is achieved at a point (Z,y,t). Finally, we can choose the parameters n, «
and € small enough in order to have a positive supremum and |z — y| < 1.

We postpone the proof of this lemma to the end of the section. From now on, we suppose
that the supremum is positive and that |z — g| < 1.

3. The idea of the proof is the following : the seven next steps are devoted to show that
we can fix the parameters in ® in order to force the maximum to be achieved at time
t = 0. The last step deals with the case ¢ = 0. We prove that the particular form of the
test-function and the assumption about the modulus of continuity of the initial data lead
to a contradiction with (13) which will be the end of the proof.

4. We first consider the case when the supremum is achieved at a point such that ¢ > 0.
By applying the fundamental result of the Users’ guide to viscosity solutions ([9,
Theorem 8.3]), we know that, for every p > 0, there exist a;,as € IR and X,Y € Sy such
that
(alv qu)(fa Ys f)a X) S ,p2’+(u)(i‘a f) )

11



(a2, _qu)(f’g’{)ay) € 752’7(7])(37){) ;

0P
a) — G = E(jagaf) )

and

< )0( _OY ) < A+ pA? where A= D*®(z,7,1) . (15)

Therefore, since u and v are respectively sub- and supersolution of (2), we have
a; — Tr[b(z,t, D, ®(Z,7,1))X] + H(Z,t,u(Z,t), D,P(Z,7,t) <0 (16)
and
ay — Tr[b(g, ¢, =Dy ®(z,5,1)Y] + H(g,t,v(7, 1), =Dy ®(z,9,1)) > 0. (17)
By subtracting (17) from (16), we obtain

n+ Le(z,5,1) < Tr[b(z,t, D, P(z,7,1))X] — Tr[b(y,t, —D,®(z,7,1))Y]
+H(y,t,0(y,1), =Dy®(7,y,1)) — H(7,t,u(7,1), D ®(7,9,1)).  (18)

In order to show that the maximum cannot be achieved for ¢ > 0, we have to prove that
this inequality cannot hold for a suitable choice of the parameters and, to do so, we have
to estimate the right-hand side of this inequality.

5. For the sake of notational simplicity, we write
o, = o(z,t,D,®(%,y,t)) and o, =o0(y,t,—D,P(Z,y,1t))

and omit in the following computations the dependence on (7,y,7) when there is no
ambiguity. For any orthonormal basis (;)1<i<n=1 of IR", we have

Tr [b(z, 1, Dy ®(2,7,1)) X — b(y, t, =Dy ®(z,9,1))Y] = Tr [0, X0y — 0, Y0,,]
N
= (Xosei, 006:) — (Yoyei,ope) . (19)
i=1
On an other hand, we can write (15) as, for all ¢, & € IRV,

(XC,C) = (YEE) < e"™(D2U(C+€),(+ &) +2e" (D2 U(C+€),¢— &)
+ e (D2 W(C — €),¢ — &) + p(A2((,6), (C,6))

12



Using this last inequality with ( = o,e; and £ = oye; in (19) and letting p go to 0, (18)
becomes

n+ Lo < A+ Ay + Az + Ay, (20)

where )
Ar = e"|| DL oz + oy |7,

Ay = 28| D2 || [low + oy | [low — oy,
As = "Dy || [lo, — 0|,
| A= H(5, 1,0, 8), —D,®) — H(z,1,u(z,f), D,®).

In the fourth next steps, we estimate the A;,1 < ¢ < 4. These estimates are heavy to
obtain but the basic idea is easy: we want to prove that, for a suitable choice of parameters,
each |A4;] is bounded by C'® + 3, where C'is a fixed constant and f is sufficiently small.
It will lead to a contradiction with (20) if we take L large enough.

In all the estimates below, C' will denote a constant which may vary from line to line,
may depend on k, p but not on £, @ and L.

6. Estimate of A;.
We have
1D ¥ < k(k—1)|7 + " (¢ + ).

From (4), we get
Ai < 2e"C%k(k = Dz +g[*?((1+ [2]) + 1+ [g)?) (¢ + a).

But, since |z — 7| < 1, we can compare both |Z| and |g| with |Z 4 g|. Tt follows that there
exists a constant C' = C'(k) such that

A < Ce" K (p +a). (21)

7. Estimate of A,.
An explicit computation gives Dgy\If = DK ® Dp. We may assume without loss of
generality that T # ¢y or equivalently Dy # 0 since otherwise Ay would be 0 and causes
no problem.

From inequalities (4) and |z — | < 1, we then obtain

Ay < 20" |DK]| Dol (3 + |z + g ])llow — o, . (22)
Using (H1), we have

low = oyl < o(Z,1, Da®) — 05,1, Da®)|| + [lo (7, 1, Da®) — 0 (7, 1, =Dy D)

- |Dx<I>+Dy<P|
< Cli—gl+C .
< Clz—yl 1+ |D,®| + |D, 9|

13



But D,® = " (DK (¢ + a) + KD¢p) and D,® = e (DK (p + a) — KDy). We obtain

2¢"|DK|(¢ + )
1+ 1(|D,® + D,®| + |D,® — D,®|)

low —ayll < Clz—g|+C

- | DK|(¢ + a)
< Oz —g|+20==2 23
Combining this last inequality with (22) and using that
S k=1 7 —gP!
|DK| = k|Z + 7| and |Do| =P
show that there exists a positive constant C' = C(k, p) such that
Ay < Cel"K (¢ + a). (24)
8. Estimate of Aj;.
This step is the most technical one. First, the computation of Dzy\II gives
As < M K|ID?¢|| [low — 0|
and we have
low —oylI> = llo(&,%, D,®) — o(5,1, D)
+2||o(z,t, D,®@) — o(y,t, Dy ®)|| ||lo(y, t, D,®) — o(y,t, —D,®)||
+lo (9,1, Ds®) — o (y,t, =D, ®)|” .
It follows
As| < 2K e o(,F, Dy®) — o(y,F, D,®)||” || D]
£2K e o(7, 1, Du®) — (7, 1, ~D, D) | | D¢ (25)

We estimate separately the two terms which appear in the right-hand side (25). For the
first one, using (H1), we obtain

2K ' ||o(z,F, Dy®) — o(7,F, D)) | D?¢|| < 2C%p(p — 1) " Ky (26)

because |Z — 7| D%p|| < p(p — 1)¢.
The estimate of the second term is the hardest one. Again we may assume without
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loss of generality that T # ¢ or equivalently Dy # 0; we have
second term = 2K e ||o (7, T, D,®) — o (7, , —D,®)|’ || D*¢||

c =g [ C|D,®+ D,®| \?
< 9CKel 1z — g T y
= ¢ o7 1+ |D, | + |D, 9]

_ —p— 2
< oKt Tl < |D:® + D, 9| )
- ep 1+1(D,®+ D,®| + |D,® — D,®|)

_ i 7 2
< osoget Tl 2eM(p + o) |DK|
- ep 1+ e (p+ a)|DK| + e K|Dy|

n 2
< 2CKeLf |i._g|p*2 (eLt(gp+a)|DK|)

& (eM(p+a)|DK|) (M K| D))

for every positive A, u such that A + p < 1.
We now distinguish two cases.
— 1%¢ case. If ¢ > «, then taking A = 0 and p = 1, we get

o y|p—2 e2LE<P2|DK|2
eP e2L£K2|DSO|2

. (|IDK|\?
< 20KeM IDK]
< skt (12

-z
second term < 20Ke |

< 20Ke .

— 2™ case. Otherwise, a > ¢. Then
— g2 (eLfoz|DK|)2
ev (eLfa|DK|)2’\ <eLthil7|P1>2”

T
second term < 20KeLt|
epb

< 2CK1—2ueLf(3—2A—2u) |fi‘ . g|p—2—2u(p—1) €—p+2up (O[|DK|)272)\ ‘

We choose p = and this yields

_p==z
2(p—1)
second term < 203557 02 A [ 5T IDK|> 2.

From now on, we take

p>k+1

with

and we choose \ =

DO | —
N D

p—Fk—1
=Dk -1)

15



Using that |[DK| < kK%, we obtain

+ (2— ZA)(Ic 1)

second term < 2(C'e LI~ 521 o 2~ 2’\Kp 1
< 20T K (30)
Combining (27) and (30), we obtain
second term < max {ZC’eLEKgo, 20 e e P/(P=1) f aK} , (31)

and from (26) and (31), we get
|As] < Cel'Kyp+ CKe(p+a)
+max {QCeLich, 203 cP/(r=1) of aK}

< C'max {eLfK(go +a), 3t g7/ of aK} : (32)
where C' is a positive constant independent of £, a;, L and .

9. Estimate of A,.
Since we have

0< (I)(i‘,g,f) < u(i‘af) o U(g,f)

and since u — H(+,-, u,-) is nondecreasing, we first get

Then, using (H2), it follows that

Ay < |H@,Eu(z, D), ~D,®) — H(5,Fu(, ), D,d)|
+H (7, Fu(z,7), D, D) — H(z,F,u(z,7), D)
< m((1+[g)[D2® + Dy®[) +m ((1 + [D:®[)|7 - 7]) -
Because of the properties of a modulus of continuity, for every » > 0 and every v > 0,

there exists a positive constant C'(7) such that m(r) < v+ C(y)r. Taking v = /2 and
up to replace at each step C'(n) by a larger one which depends only on 1, we obtain

Ai £ L+C)((1+3)ID.® + D,®| + (1 + D, )|z — 7])
< 5400 (M +[F)IDK|(o+0) + (1 + " (DK|(p + a) + K| Dg])) 7 ~ 71)
< 240 (MK lp+a)+ o —yl).
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But from Young’s inequality, we have

7 — 7]
cpb

[z —y| < +e? < K(p+a)+ef
and finally, we obtain
A<+ Cn) (MK (g +0) +27) (33)

where C'(n) is a positive constant independent of a, ¢ and L.

10. End of the case t > 0.

Plugging estimates (21), (24), (32) and (33) in (20) yields

N+L® < —+(C+C0)®+Ce e P/ of oK +C(n)ef,

NS —~

where C' is a positive constant which is independent of €, a, n and L. Thus, we can first
choose a constant L large enough, namely L(n) > C' + C(n) + 1, such that the previous
inequality becomes

g + & < Ot e/ of oK + C(n) e, (34)

for every positive e, and 7. Then we take o = £, choosing ¢ large enough such that

p
00 > ——.
> p— (35)
Thus (34) reads

g +eMK(p+a) < CeMT 0P/0-1) o K 4 C(n)ef.
Taking £ small enough such that C(n)s? < n/2 and C T £%-7/(P=1) < 1, we obtain a
contradiction. Finally, the conclusion of the preceding steps is: if we choose L,p and k
as above and take o = £ (where / satisfies (35)), then necessarily # = 0 for sufficiently

small e.

11. From the previous step, we know that the maximum of the function u — v — ® is
achieved at a point (Z,7,0) which implies, from (13) and Lemma 4.1, that there exists
0 > 0 such that

0<6<u(®i)—v#t) - e K(2F) — i < u(z,0) —v(7,0) — K(Z+ §)(p + £,
for ¢ and 7 small enough. Since u(z,0) < uy < v(g, 0), this inequality leads to

§ < up(r) — ug(y) — K (7 +7)(p +£°).
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Now, from (H3-ug)(v), there exists C() > 0 such that

5 < m(+z[+g) |z —gl) — K@ +9)(p +£)

< g +CO)(L+ |2+ [g)"]7 — gl — K(@ + ) (@ — ) +£°). (36)

Since |7 — g| < 1, there exists C such that (1+ |Z| +|7])” < C(1+ |Z + 7|*) and therefore
(36) yields

| S

. 7 — P
<O+ |7+g)T -7 — 1+ |7+ 7% <Q + ef> . (37)
In order to study the right-hand side of this inequality, we introduce the function ¢ defined
by

g(r,s) = C(6)C(1 +1")s — (1 + 1) (i—z + 54> ,

for every r,s > 0. One easily shows that there exists a constant C' depending only on
C(6),C and p such that

g(r,s) < C—————cv1 — (1 +1F). (38)

(1+ )it

i+ k)% SCN’(1+7“V;T_1I€),Withé’:é’(N,l/,p,k),We
k)=

Then, using that, for every r > 0,

obtain from (38)

vp—k

g(r,s) < f(r):= cC (1 41

)gp% — (1 + M), (39)
for every r, s > 0. We take p large enough such that
vp —k > 0. (40)

Since, in addition, we have already chosen £ > v + 1 at the beginning, the function f

achieves a maximum at
Lp—1)—p

r=C'c =R ,

where the € depends only on C,C,p, v, k. Replacing r by this value, we obtain that for
every r > 0,

f(r) < CCevr1 + Ce, (41)
where C' is a constant depending on C,C, p, v, k and

_ kp—tlvp— k)
plk—v)
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From (37),(39) and (41), we obtain
J p
— p—1 2
5 <C (5 + € )

with C is a constant depending only on 4§, v, p, k and N.

In order to conclude through the above inequality by letting € tend to 0, we need to
kp
vp —k
since vp — k > 0 from (40). To do so, we recall that we have chosen k > max{2,v+1} at
P p—k—1
——— (see (35)) where § = ———F———
oy —1) o () b D1

(see (29)). Thus, we need to find ¢,k and p such that

have v > 0 i.e. to be able to choose the parameters in such a way to have / <

the beginning, p > k + 1 (see (28)) and ¢ >

-1
k>max{2,v+1}, p>k+1, wvp>k and M<€< hp )
p—k—1 vp—k

(42)

To fulfill the last condition in (42), it is sufficient to have p(v — k(v — 1)) > 2k. It follows
that, if we can find a suitable &, up to take p large enough, then all the conditions would
be satisfied. We distinguish two cases:

— 15t case. If v < 1, then we take & > 2 and we are done.

— 2™ case. If v > 1, then we have to find k such that

14
vr+1<k< .
v—1

It leads to a condition on v, namely v? < v + 1 which is automatically satisfied provided
1+5

as we supposed it.

Finally, in any case, it is possible to fulfill conditions (42); thus the proof of the theo-
rem is complete. O

Now we turn to the proof of the Lemma.

Proof of Lemma 4.1. We first prove (14). We are going to do it only for the subsolution
u, the proof for the supersolution v being analogous.
To do so, we introduce for C', L, ¢ > 0, £ > 2 and the sequence of smooth functions

(Xe)e defined by
Xl ) = e (C(1L+ )5 (1 + o))

Tedious but straightforward computations show that, for any C', v and k, if L is chosen
large enough, then x. is a strict supersolution of (2) for any £ small enough.

On an other hand, since u(z,0) < ug(x) in RN and since ug satisfies (H3-ug)(v), it
is clear that if C is chosen large enough, then u(z,0) < x.(z,0) in R".
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Finally since u is in Cpoly, we have, for k large enough u(x,t)/(1 + |z|)¥ — 0 when
|z| — 400 uniformly for ¢ € [0, T] and therefore u(x,t) < x.(z,t) for |z| large enough.

Using these three properties, one shows easily that u(z,t) < y.(x,t) in RN x [0,T] :
indeed, because of the last one, u — . achieves its maximum on IRY x [0, T] but since u
is a viscosity subsolution of (2) and . is a strict smooth supersolution of this equation,
this maximum cannot be achieved for ¢ > 0. Therefore it is achieved for ¢ = 0 and the
maximum is therefore negative, proving the claim. Letting £ tend to 0 yields (14).

Now we prove the second part of the lemma. Since u(z,t)—v(y,t) —®(x,y,t) is upper-
semicontinuous, in order to prove that the supremum is achieved, it suffices to prove that
this function tends to —oo when |z|, |y| — 400 (uniformly with respect to ¢ € [0,T]). But

lz —y|?

MK (x+y) (ol —y)+a)+nt > +a(l+ |z +y|")

1
. o .
> mln{a,—gp} (Jz —y[P+ 1+ |z +y|*). (43)
Since p > k > max{2,v + 1}, using the convexity of r — r¥, we have

z—ylP+ 1+ +yl" >z —ylf + ]z +ylF > 2 + y~
From (43) and (14), it follows

u(x,t) —o(y, t) — ®(x,y,t) < wu(z,t) —v(y,t) —min {a, gip} (|35|’7g + |y|k)

< C (L4 e +[y*!) — min {04, 5—1,,} (Il +1y[*)

which proves the claim since v + 1 < k.
On an other hand, we have
u(fa i) o U(ga i) o (I)(a_ja Y, i) > U(jja E) o U(‘%JE) o eLEK(Q‘%)a - 7]{

From (13), the right-hand side is positive if & and 7 are sufficiently small.
For a and n sufficiently small, we have

0 < u(z,1) = v(g,f) = ®(z,5,8) <O (L+]a[""" + |gI"*") — " K(z +g)(¢ + ) — 1.
By using the convexity of r — r**1, it follows
(1—|—|j—|—_k |:f_g|p = —v+1 =  =|lv+l
i) (P57 ta) <O+l gl - g,

Since v + 1 < k, we obtain

|z — gl

S <C(+lz—g"")

which implies that |Z — ¢| < 1 for & small enough since p > v + 1. And the proof of the
lemma is complete. O
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5 Proof of Corollary 2.1

The uniqueness part in the statement of Corollary 2.1 is an immediate consequence of
Theorem 2.1. In this section, we prove the existence result using Perron’s method. For
the description of this method in the context of viscosity solutions, we refer to Ishii [17]
and Crandall, Ishii and Lions [9].

A straightforward computation shows that, if C' > 0 and L are large enough, then
u(z,t) = —Cel(1 + |z|2)= and u(z,t) = C el (1 + |z[2)F are respectively viscosity
sub- and supersolution of (2).

We define the set S in the following way : an locally bounded, possibly discontinuous,
function w defined on RN x [0,T]isin S if u < w < W on RYN x [0,T] and if w* is a
viscosity subsolution of (2) satisfying the initial condition in the viscosity sense, i.e.

min {88_1: — Tr [b(z, 0, Dw)D*w] + H(z,0,w, Dw), w*(x,0)— ug(:c)} <0 (44)

in RN x {0}. Then we set

u(z,t) = supw(x,t).
weS

Classical arguments show that wu is still a subsolution. Moreover, when a subsolution
w satisfies the initial condition (44), it is well-known (see [1] for instance) that w*(z,0) <
up(z) for all x € IRN. From the definition of u, it follows u*(z,0) < ug(x) for all z € IRN.

From Perron’s method, u is a supersolution which satisfies the initial condition (44)
where we replace “min” by “max”, “w*” by “w,” and “<” by “>”. As above, it follows
Uy (7,0) > up(x) for all z € RY.

Finally, we have u*(-,0) < uy < wu,(-,0) in IRN. Applying our comparison result
(Theorem 2.1) to u* and wu,, we obtain u* < wu, which means that u is a continuous
viscosity solution of (2) with initial datum . O
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