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tIn this arti
le, we are interested in uniqueness results for vis
osity solutionsof a general 
lass of quasilinear, possibly degenerate, paraboli
 equations set inIRN . Using 
lassi
al vis
osity solutions' methods, we obtain a general 
omparisonresult for solutions with polynomial growths but with a restri
tion on the growthof the initial data. The main appli
ation is the uniqueness of solutions for themean 
urvature equation for graphs whi
h was only known in the 
lass of uniformly
ontinuous fun
tions. An appli
ation to the mean 
urvature 
ow is given.Key-words: Quasilinear paraboli
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tionThis arti
le is a 
ontinuation of the program started in [3℄ (see [2℄ for an introdu
torypaper) whi
h aim is the study of the uniqueness properties for unbounded vis
osity so-lutions of quasilinear, possibly degenerate, paraboli
 equations set in IRN . This programwas motivated by the following surprising result of E
ker and Huisken [12℄ : for any initialdata u0 2 W 1;1lo
 (IRN), there exists a smooth solution of the equation8<: �u�t ��u+ hD2uDu;Dui1 + jDuj2 = 0 in IRN � (0;+1) ;u(x; 0) = u0(x) in IRN : (1)This work was partially supported by the TMR program \Vis
osity solutions and their appli
ations."1



Here and below the solution u is a real-valued fun
tions, Du and D2u denote respe
tivelyits gradient and Hessian matrix while j � j and h�; �i stand for the 
lassi
al Eu
lidean normand inner produ
t in IRN .The very non-standard feature of this result is that no assumption on the behaviorof the initial data at in�nity is imposed and therefore the solutions may have also anypossible behavior at in�nity.A natural question is then whether su
h a solution is unique or not. It is a veryintriguing and 
hallenging question sin
e one has to take in a

ount the la
k of restri
tionon the behavior of the solutions at in�nity, an unusual fa
t. As far as we know, thisquestion in its full generality is still open in IRN for N > 1 while for N = 1, the resultwas proved independently and by di�erent methods by Chou and Kwong [8℄ and Barles,Biton and Ley [4℄.In a series of papers ([3℄, [4℄ and [5℄), we address the more general question of theuniqueness of unbounded vis
osity solutions, not only for (1) but also for more generalquasilinear degenerate paraboli
 equations like8<: �u�t � Tr �b(x; t;Du)D2u�+H(x; t; u;Du) = 0 in IRN � (0; T );u(x; 0) = u0(x) in IRN ; (2)where T > 0 is any positive 
onstant and b is a fun
tion taking values in the set ofnonnegative symmetri
 matrix and H 2 C(IR� [0; T ℄� IR� IRN):When one wants to prove su
h uniqueness results, the �rst key diÆ
ulty is the onewe point out above i.e. the a priori unboundedness of solutions or more generally thefa
t that solutions may have any behavior at in�nity. But the gradient dependen
e inthe di�usion matrix b above is also a major diÆ
ulty: be
ause of that, it does not seempossible to obtain uniqueness results through some kind of linearization pro
edure andeven the uniqueness of smooth solutions is far from being obvious, ex
ept if one imposesrestri
tions on D2u at in�nity, a type of assumptions that we want to avoid. For resultsobtained by linearization pro
edure, we refer the reader for example to Crandall andLions [10℄, Ishii [16℄ or Ley [18℄ where the uniqueness of solutions of �rst-order equationswere obtained using \�nite speed of propagation" type properties, to Barles [1℄ whereoptimal uniqueness results for solutions with exponential growth of (stationary) �rst-order equations were proved or to Barles, Bu
kdahn and Pardoux [6℄ for solutions withexponential growths of a system of Hamilton-Ja
obi-Bellman type Equations.To the best of our knowledge, the most general uniqueness results for quasilinear equa-tions { i.e. for equations involving the above mentioned diÆ
ulty on the Du-dependen
e {
on
ern only uniformly 
ontinuous vis
osity solutions : we refer the reader the \Users'guideof vis
osity solutions" of Crandall, Ishii and Lions [9℄ and to Giga, Goto, Ishii and Sato[15℄ for results in this dire
tion.The aim of this arti
le is to push as far as possible the 
lassi
al arguments used forproving 
omparison results for vis
osity solutions in order to obtain su
h results for the2



largest possible 
lass of quasilinear equations and initial data.In the general 
omparison theorem we are able to prove by using this approa
h (seeTheorem 2.1), the 
onditions we have to impose on the equation and the behavior of solu-tion at in�nity, namely to have a polynomial growth, seem rather reasonable. Surprisinglythe main restri
tion 
on
erns the initial data whi
h has to satisfy the following, ratherunnatural, 
ondition: there exists a modulus of 
ontinuity my and 0 � � < (1 +p5)=2su
h that, for any x; y 2 IRN ,ju0(x)� u0(y)j � m ((1 + jxj+ jyj)�jx� yj) : (3)Unfortunately su
h type of restri
tion seems to be an unavoidable artefa
t of this method.We do not know how optimal is this result and in parti
ular the limiting exponent(1 +p5)=2. In fa
t, sin
e this result applies not only to the mean 
urvature equation(1) but also to a large 
lass of degenerate and nondegenerate equations, we do not thinkthat this exponent 
ould have a geometri
al interpretation. On the other hand, we believethat the result is true for any � but we were unable to prove it.Crandall and Lions [11℄ obtained related results under similar assumptions but forfully nonlinear pdes whose Hamiltonians depend only on the se
ond derivatives of thesolution u. Their te
hniques do not apply to our 
ase. Comparing to the existen
e resultfor the mean 
urvature mentioned above, 
ondition (3) may appear restri
tive but wepoint out that our proof works under a general stru
ture assumption on b and not onlyfor the mean 
urvature equation. We refer to Se
tion 2 for a pre
ise statement of theassumptions on b and H and to Se
tion 3 for a detailed treatment of the mean 
urvatureequation for graphs.Unfortunately the proof of this 
omparison result is very te
hni
al (see Se
tion 4) andrelies on the use of a tri
ky test-fun
tion that, as we already mentioned it above, we triedto build in an optimal way.This result yields a 
omparison prin
iple between semi
ontinuous sub- and supersolu-tions whi
h is a key tool for obtaining existen
e results through the Perron's method (see[17℄, [9℄, et
.). It therefore allows us to show su
h an existen
e result of solutions with asuitable growth for (2).The paper is divided as follows: in the next se
tion, we start by setting the problemand the assumptions we will use. Then we state a 
omparison prin
iple (Theorem 2.1)whi
h is the main result of the paper. As an immediate 
onsequen
e, we obtain the ex-isten
e and uniqueness of a 
ontinuous vis
osity solution to our problem (Corollary 2.1).We end this se
tion with some examples of equations whi
h are in
luded in our study.Se
tion 3 deals with the fundamental example of the mean 
urvature equation for graphs.We provide an appli
ation of the uniqueness theorem to the mean 
urvature 
ow of entiregraphs. The last se
tions 4 and 5 are devoted to the proofs of the main theorems.yA fun
tion m : IR+ ! IR+ is said to be a modulus of 
ontinuity if m(0+) := lims!0+ m(s) = 0 andm(t+ s) � m(t) +m(s) for any s; t 2 IR+: 3
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s and espe
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hanges.2 Statement of the results and examplesBefore stating the problem and our results, we introdu
e some notations. In the sequel,MN;M is the set of N � M{matri
es and SN (respe
tively S+N ) denotes the set of thesymmetri
 (respe
tively symmetri
 nonnegative) matri
es. For every A 2 MN;M , ATdenotes the transpose of A. Finally, we introdu
e the spa
e Cpoly of lo
ally bounded,possibly dis
ontinuous, fun
tions on IRN � [0; T ℄ whi
h have a polynomial growth withrespe
t to the spa
e variable. More pre
isely, u 2 Cpoly if there exists a 
onstant k > 0su
h that u(x; t)1 + jxjk �!jxj!+1 0; uniformly with respe
t to t 2 [0; T ℄:We will use the following assumptions for equation (2) :(H1) There exists a 
ontinuous fun
tion � : IRN�[0; T ℄�IRN !MN;M and some 
onstant~C su
h that b(x; t; p) = �(x; t; p)�(x; t; p)T ;k�(x; t; p)� �(y; t; p)k � ~Cjx� yj;k�(x; t; p)� �(x; t; q)k � ~C jp� qj1 + jpj+ jqj :(H2) The fun
tion H is 
ontinuous on IRN � [0; T ℄� IR� IRN , u 7! H(x; t; u; p) is nonde-
reasing for every (x; t; p) and there exists a modulus of 
ontinuity ~m su
h that, for everyx; y; p; q 2 IRN ; u 2 IR and t 2 [0;+1);jH(x; t; u; p)�H(y; t; u; p)j � ~m ((1 + jpj)jx� yj) ;and jH(x; t; u; p)�H(x; t; u; q)j � ~m ((1 + jxj)jp� qj) :Finally we say that a fun
tion ! : IRN ! IR satis�es the assumption (H3-!)(�) if thereexists a modulus of 
ontinuity m su
h that, for every x; y 2 IRN ;j!(x)� !(y)j � m ((1 + jxj+ jyj)�jx� yj) :Our main result is the following 4



Theorem 2.1 Assume that (H1) and (H2) hold and let u 2 Cpoly (respe
tively v 2Cpoly) be a upper-semi
ontinuous (respe
tively lower-semi
ontinuous) vis
osity subsolution(respe
tively vis
osity supersolution) of (2). Ifu(x; 0) � u0(x) � v(x; 0) in IRN ;where u0 is a fun
tion whi
h satis�es (H3-u0)(�) with 0 � � < (1 +p5)=2, thenu � v in IRN � [0; T ℄:The proof is postponed to Se
tion 4. An immediate 
onsequen
e of Theorem 2.1 is theCorollary 2.1 Assume that (H1) and (H2) hold and let u0 be a fun
tion whi
h satis�es(H3-u0)(�), with 0 � � < (1 +p5)=2. In Cpoly, there exists a unique 
ontinuous vis
ositysolution u of (2). Moreover, there exists C > 0 su
h thatju(x; t)j � C(1 + jxj�+1):The existen
e of a solution is a 
onsequen
e of the 
omparison result by using Perron'smethod. A priori, this existen
e results takes pla
e in the 
lass of fun
tions with polyno-mial growth but we prove that the solution inherits the growth of the initial datum. Theproof will be given in Se
tion 5.Remark 2.1 : Con
erning the existen
e of 
lassi
al solutions to these equations, we referto Chou and Kwong [8℄ who provided W 1;1 lo
al bounds for the solutions of a large 
lassof quasilinear equations without growth restri
tion on the initial data. The existen
e of asmooth solution to the mean 
urvature equation for graphs, also in the 
ase when thereis no restri
tion on the initial data, was �rst shown by E
ker and Huisken [12℄ and Evansand Spru
k [14℄ (see also [3℄).Before giving examples of equations to whi
h these results apply, let us make some
omments about the assumption (H1) and (H3-!)(�), (H2) being a natural and 
lassi
alassumption. In (H1), the two �rst 
onditions are 
lassi
al ; note that the �rst one impliesthat the equation is degenerate paraboli
. Of 
ourse, the third one is the most interestingsin
e it 
on
erns the behavior of b in the gradient variable and we re
all that it is a keydiÆ
ulty here. We have 
hosen this type of assumption for � in p be
ause this is the typeof dependen
e we have for (1). We have de
ided not to 
onsider in this paper di�erent
hoi
es of p{dependen
e in order to keep the length of this paper reasonable. They wouldlead to results with, in parti
ular, di�erent limitation on the growth of the initial data.It is anyway worth pointing out that, with su
h type of assumptions on �; there is nohope to prove a better result than a 
omparison prin
iple in Cpoly or for solutions withexponential growth: indeed the heat equation satis�es (H1). In order to go further, onehas to take in a

ount some degenera
y of the equation (typi
ally �(p)p! 0 as jpj ! +1)but our proof does not see at all this kind of property.5



Noti
e that the assumptions on � yield the existen
e of a positive 
onstant C su
hthat, for every (x; t; p) 2 IRN � [0; T ℄� IRN ;k�(x; t; p)k � C(1 + jxj) ; (4)a key fa
t in the proof.A more readable version of assumption (H3-!)(�) on the initial data of the equationis when ! is lo
ally Lips
hitz 
ontinuous, then (H3-!) holds ifjD!(x)j � C (1 + jxj�) for almost every x 2 IRN :We end this se
tion by a list of equations for whi
h the previous results apply.1. Equations of the form�u�t � a(x; t) �u(1 + jDuj2)� +H(x; t; u;Du) = 0:The above results apply when � > 0, H satis�es (H2) and a 2 C(IRN � [0;+1)) is abounded nonnegative fun
tion su
h that pa is Lips
hitz 
ontinuous in x, uniformly withrespe
t to t: Sin
e it is not obvious, we 
he
k the third statement of (H1). Without lossof generality, we 
an suppose a � 1; the dimension of the spa
e N = 1 and q � p � 0:We have �(p)� �(q) = 1(1 + p2)�=2  1� �1 + p2 � q21 + q2 ��=2! :From the inequality 1� (1 + x)�=2 � �x for �1 � x � 0; we get�(p)� �(q) � 1(1 + p2)�=2 (q � p)(p+ q)1 + q2 � 2q1 + q2 (p� q):Sin
e we assumed 0 � p � q; we 
an �nd a 
onstant C independent of p; q su
h that2q=(1 + q2) � C=(1 + p+ q): It gives the 
on
lusion.2. Non geometri
 
urvature 
ow:�u�t � div Dup1 + jDuj2 = 0:3. Consider�u�t � Tr[A(x; t)�I � Du
Du1 + jDuj2�A(x; t)D2u℄ +H(x; t; u;Du) = 0;6



If A is a bounded 
ontinuous fun
tion from IRN � [0;+1) into MN , Lips
hitz in x(uniformly in t) and H satis�es (H2), then our results apply. In parti
ular,�u�t � a(x; t)p1 + jDuj2 div Dup1 + jDuj2 + 
(x; t)! = 0ful�lls the assumptions as soon as the 
ontinuous fun
tions a; 
 are bounded, a is nonneg-ative and pa; 
 are Lips
hitz 
ontinuous in x uniformly in t: If a � 1 and 
 is 
onstant,then we re
ognize the geometri
 eikonal equation. The mean 
urvature equation for graphs(a � 1 and 
 � 0) is studied in great details in the following se
tion.4. �u�t � sup�2ATr[b�(x; t;Du)D2u℄ + sup�2BH�(x; t; u;Du) = 0;when (H1) holds for b� and (H2) holds for H� with 
onstants independent of �; �:5. With minor adaptations in the proof of the 
omparison result we 
an deal with�u�t � f �Tr[b(x; t;Du)D2u℄�+H(x; t; u;Du) = 0;under (H1) and (H2) for a nonde
reasing nonnegative fun
tion f whi
h satis�es, forevery z; z0 2 IR; f(z)� f(z0) � Cjz0 � zj�;with � 2 [0; 1℄:3 Appli
ation to the mean 
urvature equationOur main motivation is to prove some uniqueness results for the mean 
urvature equationfor graphs. In this se
tion, we re
all some fa
ts about this equation and show that itenters the framework of Theorem 2.1. We then apply these results to the mean 
urvature
ow for entire graphs in IRN+1:We 
an write the mean 
urvature equation in di�erent forms. To follow the notationsof the previous se
tion, we will write it as�u�t � Tr �b
(Du) D2u� = 0; (5)where, for every p 2 IRN , b
(p) = I � p
 p1 + jpj2 : (6)The same equation is often written�u�t ��u+ hD2uDu;Dui1 + jDuj2 = 0 in IRN � (0;+1); (7)7



or in divergen
e form�u�t �p1 + jruj2 div rup1 + jruj2! = 0: (8)The operator b
 de�ned by (6) maps IRN into S+N . For every p 2 IRN ; we 
an de�nethe positive symmetri
 square root b1=2
 (p) of b
(p) 2 S+N : The following lemma providessome properties of b1=2
 .Lemma 3.1 For every p 2 IRN ;b1=2
 (p) = I � 1p1 + jpj2(1 +p1 + jpj2)p
 p:Moreover, b1=2
 is bounded and Lips
hitz 
ontinuous in IRN ; there exists a positive 
onstantC su
h that, for every p; q 2 IRN ;kb1=2
 (p)� b1=2
 (q)k � Cjp� qj1 + jpj+ jqj : (9)Proof of Lemma 3.1. We �rst 
ompute b1=2
 . For every q 2 (Span p)?; b
(p)q = q andb
(p)p = p=(1+jpj2). It follows that we 
an look for b1=2
 in the form b1=2
 (p) = I�f(p)p
p.Then, an easy 
al
ulation gives the result. Looking at the formula, it is 
lear that b1=2
 is
ontinuous and bounded.To 
he
k (9), we writekb1=2
 (p)� b1=2
 (q)k = kf(q)q 
 q � f(p)p
 pk= kq 
 (q � p)f(q) + (q � p)
 pf(q) + p
 p(f(q)� f(p))k� (jqjf(q) + jpjf(q))jp� qj+ jpj2jf(p)� f(q)j:Without loss of generality, we 
an take jqj � jpj. On the one hand,jqjf(q) + jpjf(q) � 2jqjf(q) � 2jqjp1 + jqj2(1 +p1 + jqj2) � 21 +p1 + jqj2� 21 + jqj � 21 + 12(jpj+ jqj) � 41 + jpj+ jqj : (10)On the other hand, by setting g(p) =p1 + jpj2;jpj2jf(q)� f(p)j � jpj2f(p)f(q) jg(p)(1 + g(p))� g(q)(1 + g(q))j� jpj2f(p)f(q) j1 + g(p) + g(q)j jg(p)� g(q)j :8



But a straightforward 
al
ulation shows that jg(p)�g(q)j � jp�qj and that the appli
ation(p; q) 7! jpj2f(p)f(q)j1 + g(p) + g(q)j(1 + jpj+ jqj)is 
ontinuous and bounded on the set f(p; q) 2 IR2N : jpj � jqjg thus there exists a
onstant C1 > 0 su
h that for every p; q 2 IRN ; jpj � jqj; we havejpj2f(p)f(q) j1 + g(p) + g(q)j jg(p)� g(q)j � C1jp� qj1 + jpj+ jqj : (11)Combining (10) and (11), we obtain the result with C = 4 + C1: 2Thanks to the previous lemma and the existen
e of a smooth solution to (7) (
f. [12℄,[14℄ and [3℄) we getTheorem 3.1 Assume that u0 2 C(IRN) satis�es (H3-u0)(�), with 0 � � < (1 +p5)=2.Then (7) (or equivalently (5) or (8)) has a unique solution u 2 C(IRN � [0;+1)) \C1(IRN � (0;+1)) in Cpoly:We turn to a geometri
al appli
ation to the so-
alled level-set approa
h to the generalizedevolution of hypersurfa
es by their mean 
urvature. This method, introdu
ed for numer-i
al 
omputations by Osher and Sethian [19℄, was developed theoreti
ally by Evans andSpru
k [13℄ and Chen, Giga and Goto [7℄.Let us re
all brie
y the level-set approa
h in the 
ase of the mean 
urvature motionof entire graphs. We 
onsider the graph of the initial datum u0 2 C(IR) of (7) as anhypersurfa
e �0 = f(x; y) 2 IRN�IR : u0(x) = yg of IRN+1. De�ne 
0 = f(x; y) 2 IRN+1 :u0(x) < yg. We take a uniformly 
ontinuous fun
tion v0 : IRN+1 ! IR su
h that�0 = f(x; y) 2 IRN+1 : v0(x; y) = 0g and 
0 = f(x; y) 2 IRN+1 : v0(x; y) > 0g (12)(
hoose the signed-distan
e to �0 for instan
e). Next, we 
onsider a fun
tion v : IRN+1 �(0;+1) ! IR su
h that v(x; u(x; t); t) = 0 where u is a solution of (7). Formally, v hasto satisfy the well-known geometri
al mean 
urvature equation8<: �v�t ��v + hD2vDv;DvijDvj2 in IRN+1 � (0; T );v(�; �; 0) = v0 in IRN+1 :This equation admits a unique vis
osity solution v 2 UC(IRN+1 � [0;+1)) for everyinitial datum v0 2 UC(IRN+1), where UC denotes the uniformly 
ontinuous fun
tions.Moreover, the level-set approa
h works: it means that we 
an de�ne, for every t 2 [0; T ℄;�t = f(x; y) 2 IRN+1 : v(x; y; t) = 0g and 
t = f(x; y) 2 IRN+1 : v(x; y; t) > 0g;9



the sets (�t)t and (
t)t depend only on the initial sets �0 and 
0 but not on the 
hoi
eof v0: The family (�t)t is 
alled the generalized evolution by mean 
urvature of the graph�0 and �t is 
alled the front. A natural issue is the 
onne
tion between this generalizedevolution and the 
lassi
al motion by mean 
urvature of the graph of u0. Note that �t isde�ned as the 0-level-set of a uniformly 
ontinuous fun
tion; it may be very irregular ingeneral and 
an even develop an interior in IRN+1. In our 
ontext, we haveTheorem 3.2 If u0 2 C(IRN) satis�es (H3-u0)(�), with 0 � � < (1 +p5)=2, then, forevery t 2 [0; T ℄, the set �t is a entire smooth graph, namely�t = f(x; y) 2 IRN+1 : y = u(x; t)g;where u is the unique smooth solution of (7) with initial datum u0. Moreover, the evolutionof �t agrees with the 
lassi
al motion by mean 
urvature in the sense of the di�erentialgeometry.Proof of Theorem 3.2. From [3℄, we know that, if we start with an hypersurfa
e �0 whi
his an entire 
ontinuous graph in IRN � IR, then, for every t 2 [0; T ℄,�t = f(x; y) 2 IRN+1 : u�(x; t) � y � u+(x; t)g;where u� and u+ are respe
tively the minimal and the maximal (dis
ontinuous) vis
ositysolution of (7). In the spe
ial 
ase of the mean 
urvature equation, we proved that theboundary of the front �t is smooth. It follows that u� and u+ are smooth. At this step,we aim at applying Theorem 3.1 to show that u� = u+. To do it, we need to know thatu�; u+ 2 Cpoly: Note that Corollary 2.1 is not suÆ
ient be
ause we suppose, a priori, thatthe solution has a polynomial growth. To over
ome this diÆ
ulty, we invoke a L1 lo
albound for (7) (see [3℄): there exists a 
onstant C su
h that, for every (x; t) 2 IRN � [0; T ℄;ju(x; t)j � maxfju0(y)j+p2Ct : y 2 �B(x;p2Ct)g:From (H3-u0)(�), there exists a positive 
onstant ~C su
h that ju0(y)j � ~C(1+ jyj1+�): Itfollows ju(x; t)j � ~C(1 + (jxj+p2Ct)1+�) +p2CT;whi
h proves the 
laim.It implies u�; u+ 2 Cpoly and from Theorem 3.1, we obtain u� = u+ := u. Finally,�t = Graph(u(�; t)) is a smooth submanifold of IRN+1 (in parti
ular, �t never fattens). Inthis 
ase, the generalized evolution �ts in with the 
lassi
al evolution by mean 
urvature(see Evans and Spru
k [13℄ and [14℄ for the agreement with an alternative generalizedmotion). 2We refer to [3℄ and [5℄ for some more general geometri
al motions. In these works, weasso
iate a geometri
al motion to some quasilinear equations of the type (2) for whi
hthe above te
hniques apply. 10



4 Proof of Theorem 2.11. We argue by 
ontradi
tion assuming that there exists (~x; ~t) 2 IRN � [0; T ℄ su
h thatu(~x; ~t) > v(~x; ~t): (13)For "; � > 0; p � k > maxf2; � + 1g to be 
hosen later on, we introdu
e the fun
tionsde�ned by : for every x0; y0 2 IRN ,K(x0) := 1 + jx0jk; '(y0) := jy0jp"p and 	(x0; y0) := K(x0)('(y0) + �):Then we 
onsider the test-fun
tion given by : for every x; y 2 IRN ;�(x; y; t) := eLt	(x+ y; x� y) + �t;where L; � > 0.2. The �rst step of the proof is theLemma 4.1 Under the assumptions of Theorem 2.1, there exists a 
onstant C > 0 su
hthat, for any x 2 IRN and t 2 [0; T ℄;u(x; t) � C(1 + jxj�+1) and v(x; t) � �C(1 + jxj�+1) : (14)Moreover, if p � k > � + 1, thesup(x;y;t)2(IRN )2�[0;T ℄�u(x; t)� v(y; t)� �(x; y; t)	is �nite and is a
hieved at a point (�x; �y; �t). Finally, we 
an 
hoose the parameters �, �and " small enough in order to have a positive supremum and j�x� �yj � 1.We postpone the proof of this lemma to the end of the se
tion. From now on, we supposethat the supremum is positive and that j�x� �yj � 1.3. The idea of the proof is the following : the seven next steps are devoted to show thatwe 
an �x the parameters in � in order to for
e the maximum to be a
hieved at timet = 0. The last step deals with the 
ase t = 0. We prove that the parti
ular form of thetest-fun
tion and the assumption about the modulus of 
ontinuity of the initial data leadto a 
ontradi
tion with (13) whi
h will be the end of the proof.4. We �rst 
onsider the 
ase when the supremum is a
hieved at a point su
h that �t > 0.By applying the fundamental result of the Users' guide to vis
osity solutions ([9,Theorem 8.3℄), we know that, for every � > 0, there exist a1; a2 2 IR and X; Y 2 SN su
hthat (a1; Dx�(�x; �y; �t); X) 2 �P2;+(u)(�x; �t) ;11



(a2;�Dy�(�x; �y; �t); Y ) 2 �P2;�(v)(�y; �t) ;a1 � a2 = ���t (�x; �y; �t) ;and � X 00 �Y � � A+ �A2 where A = D2�(�x; �y; �t) : (15)Therefore, sin
e u and v are respe
tively sub- and supersolution of (2), we havea1 � Tr [b(�x; �t; Dx�(�x; �y; �t))X℄ +H(�x; �t; u(�x; �t); Dx�(�x; �y; �t)) � 0 (16)and a2 � Tr [b(�y; �t;�Dy�(�x; �y; �t))Y ℄ +H(�y; �t; v(�y; �t);�Dy�(�x; �y; �t)) � 0: (17)By subtra
ting (17) from (16), we obtain� + L�(�x; �y; �t) � Tr [b(�x; �t; Dx�(�x; �y; �t))X℄� Tr [b(�y; �t;�Dy�(�x; �y; �t))Y ℄+H(�y; �t; v(�y; �t);�Dy�(�x; �y; �t))�H(�x; �t; u(�x; �t); Dx�(�x; �y; �t)): (18)In order to show that the maximum 
annot be a
hieved for �t > 0, we have to prove thatthis inequality 
annot hold for a suitable 
hoi
e of the parameters and, to do so, we haveto estimate the right-hand side of this inequality.5. For the sake of notational simpli
ity, we write�x = �(�x; �t; Dx�(�x; �y; �t)) and �y = �(�y; �t;�Dy�(�x; �y; �t))and omit in the following 
omputations the dependen
e on (�x; �y; �t) when there is noambiguity. For any orthonormal basis (ei)1�i�N=1 of IRN , we haveTr [b(�x; �t; Dx�(�x; �y; �t))X � b(�y; �t;�Dy�(�x; �y; �t))Y ℄ = Tr ��TxX�x � �Ty Y �y�= NXi=1 hX�xei; �xeii � hY �yei; �yeii : (19)On an other hand, we 
an write (15) as, for all �; � 2 IRN ;hX�; �i � hY �; �i � eL�thD2xx	(� + �); � + �i+ 2eL�thD2xy	(� + �); � � �i+ eL�thD2yy	(� � �); � � �i+ �hA2(�; �); (�; �)i:12



Using this last inequality with � = �xei and � = �yei in (19) and letting � go to 0, (18)be
omes � + L� � A1 +A2 +A3 +A4; (20)where 8>>>>>><>>>>>>:
A1 = eL�tkD2xx	k k�x + �yk2;A2 = 2eL�tkD2xy	k k�x + �yk k�x � �yk;A3 = eL�tkD2yy	k k�x � �yk2;A4 = H(�y; �t; v(�y; �t);�Dy�)�H(�x; �t; u(�x; �t); Dx�):In the fourth next steps, we estimate the Ai; 1 � i � 4. These estimates are heavy toobtain but the basi
 idea is easy: we want to prove that, for a suitable 
hoi
e of parameters,ea
h jAij is bounded by �C� + �, where �C is a �xed 
onstant and � is suÆ
iently small.It will lead to a 
ontradi
tion with (20) if we take L large enough.In all the estimates below, C will denote a 
onstant whi
h may vary from line to line,may depend on k, p but not on ", � and L.6. Estimate of A1.We have kDxx	k � k(k � 1)j�x+ �yjk�2('+ �):From (4), we getA1 � 2eL�tC2k(k � 1)j�x+ �yjk�2((1 + j�xj)2 + (1 + j�yj)2)('+ �):But, sin
e j�x� �yj � 1, we 
an 
ompare both j�xj and j�yj with j�x+ �yj. It follows that thereexists a 
onstant C = C(k) su
h thatA1 � CeL�tK('+ �): (21)7. Estimate of A2.An expli
it 
omputation gives D2xy	 = DK 
 D'. We may assume without loss ofgenerality that �x 6= �y or equivalently D' 6= 0 sin
e otherwise A2 would be 0 and 
ausesno problem.From inequalities (4) and j�x� �yj � 1, we then obtainA2 � 2CeL�tjDKjjD'j(3 + j�x+ �yj)k�x � �yk: (22)Using (H1), we havek�x � �yk � k�(�x; �t; Dx�)� �(�y; �t; Dx�)k + k�(�y; �t; Dx�)� �(�y; �t;�Dy�)k� Cj�x� �yj+ C jDx� +Dy�j1 + jDx�j+ jDy�j :13



But Dx� = eL�t(DK('+ �) +KD') and Dy� = eL�t(DK('+ �)�KD'). We obtaink�x � �yk � Cj�x� �yj+ C 2eL�tjDKj('+ �)1 + 12(jDx� +Dy�j+ jDx��Dy�j)� Cj�x� �yj+ 2C jDKj('+ �)KjD'j : (23)Combining this last inequality with (22) and using thatjDKj = kj�x+ �yjk�1 and jD'j = p j�x� �yjp�1"p ;show that there exists a positive 
onstant C = C(k; p) su
h thatA2 � CeL�tK('+ �): (24)8. Estimate of A3.This step is the most te
hni
al one. First, the 
omputation of D2yy	 givesA3 � eL�tKkD2'k k�x � �yk2and we havek�x � �yk2 = k�(�x; �t; Dx�)� �(�y; �t; Dx�)k2+2 k�(�x; �t; Dx�)� �(�y; �t; Dx�)k k�(�y; �t; Dx�)� �(�y; �t;�Dy�)k+ k�(�y; �t; Dx�)� �(�y; �t;�Dy�)k2 :It follows jA3j � 2K eL�t k�(�x; �t; Dx�)� �(�y; �t; Dx�)k2 kD2'k+2K eL�t k�(�y; �t; Dx�)� �(�y; �t;�Dy�)k2 kD2'k: (25)We estimate separately the two terms whi
h appear in the right-hand side (25). For the�rst one, using (H1), we obtain2K eL�t k�(�x; �t; Dx�)� �(�y; �t; Dx�)k2 kD2'k � 2C2p(p� 1) eL�tK' (26)be
ause j�x� �yj2kD2'k � p(p� 1)'.The estimate of the se
ond term is the hardest one. Again we may assume without
14



loss of generality that �x 6= �y or equivalently D' 6= 0; we havese
ond term = 2K eL�t k�(�y; �t; Dx�)� �(�y; �t;�Dy�)k2 kD2'k� 2CKeL�t j�x� �yjp�2"p � CjDx� +Dy�j1 + jDx�j+ jDy�j�2� 2CKeL�t j�x� �yjp�2"p � jDx� +Dy�j1 + 12 (jDx� +Dy�j + jDx��Dy�j)�2� 2CKeL�t j�x� �yjp�2"p � 2eL�t('+ �)jDKj1 + eL�t('+ �)jDKj+ eL�tKjD'j�2� 2CKeL�t j�x� �yjp�2"p �eL�t('+ �)jDKj�2(eL�t('+ �)jDKj)2� (eL�tKjD'j)2�for every positive �; � su
h that �+ � � 1.We now distinguish two 
ases.| 1st 
ase. If ' � �, then taking � = 0 and � = 1, we getse
ond term � 2CKeL�t jx� yjp�2"p e2L�t'2jDKj2e2L�tK2jD'j2� 2CKeL�t'� jDKjK �2� 2CKeL�t': (27)| 2nd 
ase. Otherwise, � � '. Thense
ond term � 2CKeL�t j�x� �yjp�2"p �eL�t�jDKj�2(eL�t�jDKj)2� �eL�tK pj�x��yjp�1"p �2�� 2CK1�2�eL�t(3�2��2�)j�x� �yjp�2�2�(p�1) "�p+2�p (�jDKj)2�2� :We 
hoose � = p� 22(p� 1) and this yieldsse
ond term � 2Ce3L�t"� pp�1�2�2�K 1p�1 jDKj2�2�:From now on, we take p > k + 1 (28)and we 
hoose � = 12 � �2 with � = p� k � 1(p� 1)(k � 1) : (29)15



Using that jDKj � kK k�1k ; we obtainse
ond term � 2Ce3L�t"� pp�1�2�2�K 1p�1+ (2�2�)(k�1)k� 2Ce3L�t"� pp�1���K : (30)Combining (27) and (30), we obtainse
ond term � maxn2CeL�tK'; 2Ce3L�t"�p=(p�1) �� �Ko ; (31)and from (26) and (31), we getjA3j � CeL�tK'+ CKeL�t('+ �)+maxn2CeL�tK'; 2Ce3L�t "�p=(p�1) �� �Ko� CmaxneL�tK('+ �); e3L�t "�p=(p�1) �� �Ko ; (32)where C is a positive 
onstant independent of ", �, L and �.9. Estimate of A4:Sin
e we have 0 < �(�x; �y; �t) � u(�x; �t)� v(�y; �t)and sin
e u 7! H(�; �; u; �) is nonde
reasing, we �rst getA4 = H(�y; �t; v(�y; �t);�Dy�)�H(�x; �t; u(�x; �t); Dx�)� H(�y; �t; u(�x; �t);�Dy�)�H(�x; �t; u(�x; �t); Dx�):Then, using (H2), it follows thatA4 � jH(�y; �t; u(�x; �t);�Dy�)�H(�y; �t; u(�x; �t); Dx�)j+jH(�y; �t; u(�x; �t); Dx�)�H(�x; �t; u(�x; �t); Dx�)j� m ((1 + j�yj)jDx� +Dy�j) +m ((1 + jDx�j)j�x� �yj) :Be
ause of the properties of a modulus of 
ontinuity, for every r > 0 and every 
 > 0,there exists a positive 
onstant C(
) su
h that m(r) � 
 + C(
)r: Taking 
 = �=2 andup to repla
e at ea
h step C(�) by a larger one whi
h depends only on �, we obtainA4 � �2 + C(�)�(1 + j�yj)jDx� +Dy�j+ (1 + jDx�j)j�x� �yj�� �2 + C(�)�eL�t(1 + j�yj)jDKj('+ �) + (1 + eL�t(jDKj('+ �) +KjD'j))j�x� �yj�� �2 + C(�)�eL�tK('+ �) + j�x� �yj� :16



But from Young's inequality, we havej�x� �yj � j�x� �yj"p + "q � K('+ �) + "qand �nally, we obtain A4 � � + C(�) �eL�tK('+ �) + "q� ; (33)where C(�) is a positive 
onstant independent of �; " and L.10. End of the 
ase �t > 0.Plugging estimates (21), (24), (32) and (33) in (20) yields� + L� � �2 + (C + C(�))� + C e3L�t "�p=(p�1) �� �K + C(�)"q;where C is a positive 
onstant whi
h is independent of ", �, � and L. Thus, we 
an �rst
hoose a 
onstant L large enough, namely L(�) � C + C(�) + 1; su
h that the previousinequality be
omes �2 + � � C e3L�t "�p=(p�1) �� �K + C(�) "q; (34)for every positive "; � and �: Then we take � = "`, 
hoosing ` large enough su
h that�` > pp� 1 : (35)Thus (34) reads �2 + eL�tK('+ �) � C e3LT "�`�p=(p�1) �K + C(�)"q:Taking " small enough su
h that C(�)"q < �=2 and C e2LT "�`�p=(p�1) � 1; we obtain a
ontradi
tion. Finally, the 
on
lusion of the pre
eding steps is: if we 
hoose L; p and kas above and take � = "` (where ` satis�es (35)), then ne
essarily �t = 0 for suÆ
ientlysmall ".11. From the previous step, we know that the maximum of the fun
tion u � v � � isa
hieved at a point (�x; �y; 0) whi
h implies, from (13) and Lemma 4.1, that there existsÆ > 0 su
h that0 < Æ � u(~x; ~t)� v(~x; ~t)� "` eL~tK(2~x)� �~t � u(�x; 0)� v(�y; 0)�K(�x+ �y)('+ "`);for " and � small enough. Sin
e u(�x; 0) � u0 � v(�y; 0), this inequality leads toÆ � u0(�x)� u0(�y)�K(�x+ �y)('+ "`):17



Now, from (H3-u0)(�), there exists C(Æ) > 0 su
h thatÆ � m ((1 + j�xj+ j�yj)�j�x� �yj)�K(�x + �y)('+ "`)� Æ2 + C(Æ)(1 + j�xj+ j�yj)�j�x� �yj �K(�x + �y)('(�x� �y) + "`): (36)Sin
e j�x� �yj � 1, there exists ~C su
h that (1+ j�xj+ j�yj)� � ~C(1 + j�x+ �yj�) and therefore(36) yieldsÆ2 � C(Æ) ~C(1 + j�x+ �yj�)j�x� �yj � (1 + j�x+ �yjk)� j�x� �yjp"p + "`� : (37)In order to study the right-hand side of this inequality, we introdu
e the fun
tion g de�nedby g(r; s) = C(Æ) ~C(1 + r�)s� (1 + rk)�sp"p + "`� ;for every r; s � 0: One easily shows that there exists a 
onstant C depending only onC(Æ); ~C and p su
h thatg(r; s) � C (1 + r�) pp�1(1 + rk) 1p�1 " pp�1 � "`(1 + rk): (38)Then, using that, for every r > 0; (1 + r�) pp�1(1 + rk) 1p�1 � ~C(1 + r �p�kp�1 ), with ~C = ~C(N; �; p; k), weobtain from (38) g(r; s) � f(r) := C ~C �1 + r �p�kp�1 � " pp�1 � (1 + rk)"`; (39)for every r; s � 0: We take p large enough su
h that�p� k > 0: (40)Sin
e, in addition, we have already 
hosen k > � + 1 at the beginning, the fun
tion fa
hieves a maximum at r = C 0" `(p�1)�pp(��k) ;where the C 0 depends only on C; ~C; p; �; k: Repla
ing r by this value, we obtain that forevery r � 0; f(r) � C ~C" pp�1 + �C"
; (41)where �C is a 
onstant depending on C; ~C; p; �; k and
 = kp� `(�p� k)p(k � �) :18



From (37),(39) and (41), we obtainÆ2 � C �" pp�1 + "
�with C is a 
onstant depending only on Æ; �; p; k and N .In order to 
on
lude through the above inequality by letting " tend to 0, we need tohave 
 > 0 i.e. to be able to 
hoose the parameters in su
h a way to have ` < kp�p� ksin
e �p� k > 0 from (40). To do so, we re
all that we have 
hosen k > maxf2; � +1g atthe beginning, p > k + 1 (see (28)) and ` > p�(p� 1) (see (35)) where � = p� k � 1(p� 1)(k � 1)(see (29)). Thus, we need to �nd `; k and p su
h thatk > maxf2; � + 1g; p > k + 1; �p > k and p(k � 1)p� k � 1 < ` < kp�p� k : (42)To ful�ll the last 
ondition in (42), it is suÆ
ient to have p(� � k(� � 1)) > 2k: It followsthat, if we 
an �nd a suitable k; up to take p large enough, then all the 
onditions wouldbe satis�ed. We distinguish two 
ases:| 1st 
ase. If � � 1; then we take k > 2 and we are done.| 2nd 
ase. If � > 1, then we have to �nd k su
h that� + 1 < k < �� � 1 :It leads to a 
ondition on �; namely �2 < � + 1 whi
h is automati
ally satis�ed provided� < 1 +p52 as we supposed it.Finally, in any 
ase, it is possible to ful�ll 
onditions (42); thus the proof of the theo-rem is 
omplete. 2Now we turn to the proof of the Lemma.Proof of Lemma 4.1. We �rst prove (14). We are going to do it only for the subsolutionu, the proof for the supersolution v being analogous.To do so, we introdu
e for C, L, " > 0; k � 2 and the sequen
e of smooth fun
tions(�")" de�ned by �"(x; t) = eLt �C(1 + jxj2) �+12 + "(1 + jxjk)� :Tedious but straightforward 
omputations show that, for any C, � and k, if L is 
hosenlarge enough, then �" is a stri
t supersolution of (2) for any " small enough.On an other hand, sin
e u(x; 0) � u0(x) in IRN and sin
e u0 satis�es (H3-u0)(�), itis 
lear that if C is 
hosen large enough, then u(x; 0) � �"(x; 0) in IRN .19



Finally sin
e u is in Cpoly, we have, for k large enough u(x; t)=(1 + jxj)k ! 0 whenjxj ! +1 uniformly for t 2 [0; T ℄ and therefore u(x; t) � �"(x; t) for jxj large enough.Using these three properties, one shows easily that u(x; t) � �"(x; t) in IRN � [0; T ℄ :indeed, be
ause of the last one, u� �" a
hieves its maximum on IRN � [0; T ℄ but sin
e uis a vis
osity subsolution of (2) and �" is a stri
t smooth supersolution of this equation,this maximum 
annot be a
hieved for t > 0. Therefore it is a
hieved for t = 0 and themaximum is therefore negative, proving the 
laim. Letting " tend to 0 yields (14).Now we prove the se
ond part of the lemma. Sin
e u(x; t)�v(y; t)��(x; y; t) is upper-semi
ontinuous, in order to prove that the supremum is a
hieved, it suÆ
es to prove thatthis fun
tion tends to �1 when jxj; jyj ! +1 (uniformly with respe
t to t 2 [0; T ℄). ButeLtK(x+ y) ('(x� y) + �) + �t � jx� yjp"p + �(1 + jx+ yjk)� min��; 1"p��jx� yjp + 1 + jx+ yjk� : (43)Sin
e p � k > maxf2; � + 1g; using the 
onvexity of r 7! rk, we havejx� yjp + 1 + jx+ yjk � jx� yjk + jx+ yjk � jxjk + jyjk:From (43) and (14), it followsu(x; t)� v(y; t)� �(x; y; t) � u(x; t)� v(y; t)�min��; 1"p��jxjk + jyjk�� C �1 + jxj�+1 + jyj�+1��min��; 1"p��jxjk + jyjk�whi
h proves the 
laim sin
e � + 1 < k.On an other hand, we haveu(�x; �t)� v(�y; �t)� �(�x; �y; �t) � u(~x; ~t)� v(~x; ~t)� eL~tK(2~x)�� �~t:From (13), the right-hand side is positive if � and � are suÆ
iently small.For � and � suÆ
iently small, we have0 < u(�x; �t)� v(�y; �t)� �(�x; �y; �t) � C �1 + j�xj�+1 + j�yj�+1�� eL�tK(�x + �y)('+ �)� ��t:By using the 
onvexity of r 7! r�+1, it follows�1 + j�x+ �yjk�� j�x� �yjp"p + �� � C �1 + j�x+ �yj�+1 + j�x� �yj�+1� :Sin
e � + 1 < k, we obtain j�x� �yjp"p � C �1 + j�x� �yj�+1�whi
h implies that j�x � �yj � 1 for " small enough sin
e p > � + 1. And the proof of thelemma is 
omplete. 220



5 Proof of Corollary 2.1The uniqueness part in the statement of Corollary 2.1 is an immediate 
onsequen
e ofTheorem 2.1. In this se
tion, we prove the existen
e result using Perron's method. Forthe des
ription of this method in the 
ontext of vis
osity solutions, we refer to Ishii [17℄and Crandall, Ishii and Lions [9℄.A straightforward 
omputation shows that, if C > 0 and L are large enough, thenu(x; t) = �C eLt(1 + jxj2) �+12 and u(x; t) = C eLt(1 + jxj2) �+12 are respe
tively vis
ositysub- and supersolution of (2).We de�ne the set S in the following way : an lo
ally bounded, possibly dis
ontinuous,fun
tion w de�ned on IRN � [0; T ℄ is in S if u � w � u on IRN � [0; T ℄ and if w� is avis
osity subsolution of (2) satisfying the initial 
ondition in the vis
osity sense, i.e.min��w�t � Tr �b(x; 0; Dw)D2w�+H(x; 0; w;Dw); w�(x; 0)� u0(x)� � 0 (44)in IRN � f0g. Then we set u(x; t) = supw2Sw(x; t):Classi
al arguments show that u is still a subsolution. Moreover, when a subsolutionw satis�es the initial 
ondition (44), it is well-known (see [1℄ for instan
e) that w�(x; 0) �u0(x) for all x 2 IRN : From the de�nition of u; it follows u�(x; 0) � u0(x) for all x 2 IRN :From Perron's method, u is a supersolution whi
h satis�es the initial 
ondition (44)where we repla
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