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Here and below the solution u is a real-valued funtions, Du and D2u denote respetivelyits gradient and Hessian matrix while j � j and h�; �i stand for the lassial Eulidean normand inner produt in IRN .The very non-standard feature of this result is that no assumption on the behaviorof the initial data at in�nity is imposed and therefore the solutions may have also anypossible behavior at in�nity.A natural question is then whether suh a solution is unique or not. It is a veryintriguing and hallenging question sine one has to take in aount the lak of restritionon the behavior of the solutions at in�nity, an unusual fat. As far as we know, thisquestion in its full generality is still open in IRN for N > 1 while for N = 1, the resultwas proved independently and by di�erent methods by Chou and Kwong [8℄ and Barles,Biton and Ley [4℄.In a series of papers ([3℄, [4℄ and [5℄), we address the more general question of theuniqueness of unbounded visosity solutions, not only for (1) but also for more generalquasilinear degenerate paraboli equations like8<: �u�t � Tr �b(x; t;Du)D2u�+H(x; t; u;Du) = 0 in IRN � (0; T );u(x; 0) = u0(x) in IRN ; (2)where T > 0 is any positive onstant and b is a funtion taking values in the set ofnonnegative symmetri matrix and H 2 C(IR� [0; T ℄� IR� IRN):When one wants to prove suh uniqueness results, the �rst key diÆulty is the onewe point out above i.e. the a priori unboundedness of solutions or more generally thefat that solutions may have any behavior at in�nity. But the gradient dependene inthe di�usion matrix b above is also a major diÆulty: beause of that, it does not seempossible to obtain uniqueness results through some kind of linearization proedure andeven the uniqueness of smooth solutions is far from being obvious, exept if one imposesrestritions on D2u at in�nity, a type of assumptions that we want to avoid. For resultsobtained by linearization proedure, we refer the reader for example to Crandall andLions [10℄, Ishii [16℄ or Ley [18℄ where the uniqueness of solutions of �rst-order equationswere obtained using \�nite speed of propagation" type properties, to Barles [1℄ whereoptimal uniqueness results for solutions with exponential growth of (stationary) �rst-order equations were proved or to Barles, Bukdahn and Pardoux [6℄ for solutions withexponential growths of a system of Hamilton-Jaobi-Bellman type Equations.To the best of our knowledge, the most general uniqueness results for quasilinear equa-tions { i.e. for equations involving the above mentioned diÆulty on the Du-dependene {onern only uniformly ontinuous visosity solutions : we refer the reader the \Users'guideof visosity solutions" of Crandall, Ishii and Lions [9℄ and to Giga, Goto, Ishii and Sato[15℄ for results in this diretion.The aim of this artile is to push as far as possible the lassial arguments used forproving omparison results for visosity solutions in order to obtain suh results for the2



largest possible lass of quasilinear equations and initial data.In the general omparison theorem we are able to prove by using this approah (seeTheorem 2.1), the onditions we have to impose on the equation and the behavior of solu-tion at in�nity, namely to have a polynomial growth, seem rather reasonable. Surprisinglythe main restrition onerns the initial data whih has to satisfy the following, ratherunnatural, ondition: there exists a modulus of ontinuity my and 0 � � < (1 +p5)=2suh that, for any x; y 2 IRN ,ju0(x)� u0(y)j � m ((1 + jxj+ jyj)�jx� yj) : (3)Unfortunately suh type of restrition seems to be an unavoidable artefat of this method.We do not know how optimal is this result and in partiular the limiting exponent(1 +p5)=2. In fat, sine this result applies not only to the mean urvature equation(1) but also to a large lass of degenerate and nondegenerate equations, we do not thinkthat this exponent ould have a geometrial interpretation. On the other hand, we believethat the result is true for any � but we were unable to prove it.Crandall and Lions [11℄ obtained related results under similar assumptions but forfully nonlinear pdes whose Hamiltonians depend only on the seond derivatives of thesolution u. Their tehniques do not apply to our ase. Comparing to the existene resultfor the mean urvature mentioned above, ondition (3) may appear restritive but wepoint out that our proof works under a general struture assumption on b and not onlyfor the mean urvature equation. We refer to Setion 2 for a preise statement of theassumptions on b and H and to Setion 3 for a detailed treatment of the mean urvatureequation for graphs.Unfortunately the proof of this omparison result is very tehnial (see Setion 4) andrelies on the use of a triky test-funtion that, as we already mentioned it above, we triedto build in an optimal way.This result yields a omparison priniple between semiontinuous sub- and supersolu-tions whih is a key tool for obtaining existene results through the Perron's method (see[17℄, [9℄, et.). It therefore allows us to show suh an existene result of solutions with asuitable growth for (2).The paper is divided as follows: in the next setion, we start by setting the problemand the assumptions we will use. Then we state a omparison priniple (Theorem 2.1)whih is the main result of the paper. As an immediate onsequene, we obtain the ex-istene and uniqueness of a ontinuous visosity solution to our problem (Corollary 2.1).We end this setion with some examples of equations whih are inluded in our study.Setion 3 deals with the fundamental example of the mean urvature equation for graphs.We provide an appliation of the uniqueness theorem to the mean urvature ow of entiregraphs. The last setions 4 and 5 are devoted to the proofs of the main theorems.yA funtion m : IR+ ! IR+ is said to be a modulus of ontinuity if m(0+) := lims!0+ m(s) = 0 andm(t+ s) � m(t) +m(s) for any s; t 2 IR+: 3



Aknowledgment. This work was partially done while the last author had a post-dotoralposition at the University of Padova. He would like to thank the department of mathe-matis and espeially Martino Bardi for their kind hospitality and fruitful exhanges.2 Statement of the results and examplesBefore stating the problem and our results, we introdue some notations. In the sequel,MN;M is the set of N � M{matries and SN (respetively S+N ) denotes the set of thesymmetri (respetively symmetri nonnegative) matries. For every A 2 MN;M , ATdenotes the transpose of A. Finally, we introdue the spae Cpoly of loally bounded,possibly disontinuous, funtions on IRN � [0; T ℄ whih have a polynomial growth withrespet to the spae variable. More preisely, u 2 Cpoly if there exists a onstant k > 0suh that u(x; t)1 + jxjk �!jxj!+1 0; uniformly with respet to t 2 [0; T ℄:We will use the following assumptions for equation (2) :(H1) There exists a ontinuous funtion � : IRN�[0; T ℄�IRN !MN;M and some onstant~C suh that b(x; t; p) = �(x; t; p)�(x; t; p)T ;k�(x; t; p)� �(y; t; p)k � ~Cjx� yj;k�(x; t; p)� �(x; t; q)k � ~C jp� qj1 + jpj+ jqj :(H2) The funtion H is ontinuous on IRN � [0; T ℄� IR� IRN , u 7! H(x; t; u; p) is nonde-reasing for every (x; t; p) and there exists a modulus of ontinuity ~m suh that, for everyx; y; p; q 2 IRN ; u 2 IR and t 2 [0;+1);jH(x; t; u; p)�H(y; t; u; p)j � ~m ((1 + jpj)jx� yj) ;and jH(x; t; u; p)�H(x; t; u; q)j � ~m ((1 + jxj)jp� qj) :Finally we say that a funtion ! : IRN ! IR satis�es the assumption (H3-!)(�) if thereexists a modulus of ontinuity m suh that, for every x; y 2 IRN ;j!(x)� !(y)j � m ((1 + jxj+ jyj)�jx� yj) :Our main result is the following 4



Theorem 2.1 Assume that (H1) and (H2) hold and let u 2 Cpoly (respetively v 2Cpoly) be a upper-semiontinuous (respetively lower-semiontinuous) visosity subsolution(respetively visosity supersolution) of (2). Ifu(x; 0) � u0(x) � v(x; 0) in IRN ;where u0 is a funtion whih satis�es (H3-u0)(�) with 0 � � < (1 +p5)=2, thenu � v in IRN � [0; T ℄:The proof is postponed to Setion 4. An immediate onsequene of Theorem 2.1 is theCorollary 2.1 Assume that (H1) and (H2) hold and let u0 be a funtion whih satis�es(H3-u0)(�), with 0 � � < (1 +p5)=2. In Cpoly, there exists a unique ontinuous visositysolution u of (2). Moreover, there exists C > 0 suh thatju(x; t)j � C(1 + jxj�+1):The existene of a solution is a onsequene of the omparison result by using Perron'smethod. A priori, this existene results takes plae in the lass of funtions with polyno-mial growth but we prove that the solution inherits the growth of the initial datum. Theproof will be given in Setion 5.Remark 2.1 : Conerning the existene of lassial solutions to these equations, we referto Chou and Kwong [8℄ who provided W 1;1 loal bounds for the solutions of a large lassof quasilinear equations without growth restrition on the initial data. The existene of asmooth solution to the mean urvature equation for graphs, also in the ase when thereis no restrition on the initial data, was �rst shown by Eker and Huisken [12℄ and Evansand Spruk [14℄ (see also [3℄).Before giving examples of equations to whih these results apply, let us make someomments about the assumption (H1) and (H3-!)(�), (H2) being a natural and lassialassumption. In (H1), the two �rst onditions are lassial ; note that the �rst one impliesthat the equation is degenerate paraboli. Of ourse, the third one is the most interestingsine it onerns the behavior of b in the gradient variable and we reall that it is a keydiÆulty here. We have hosen this type of assumption for � in p beause this is the typeof dependene we have for (1). We have deided not to onsider in this paper di�erenthoies of p{dependene in order to keep the length of this paper reasonable. They wouldlead to results with, in partiular, di�erent limitation on the growth of the initial data.It is anyway worth pointing out that, with suh type of assumptions on �; there is nohope to prove a better result than a omparison priniple in Cpoly or for solutions withexponential growth: indeed the heat equation satis�es (H1). In order to go further, onehas to take in aount some degeneray of the equation (typially �(p)p! 0 as jpj ! +1)but our proof does not see at all this kind of property.5



Notie that the assumptions on � yield the existene of a positive onstant C suhthat, for every (x; t; p) 2 IRN � [0; T ℄� IRN ;k�(x; t; p)k � C(1 + jxj) ; (4)a key fat in the proof.A more readable version of assumption (H3-!)(�) on the initial data of the equationis when ! is loally Lipshitz ontinuous, then (H3-!) holds ifjD!(x)j � C (1 + jxj�) for almost every x 2 IRN :We end this setion by a list of equations for whih the previous results apply.1. Equations of the form�u�t � a(x; t) �u(1 + jDuj2)� +H(x; t; u;Du) = 0:The above results apply when � > 0, H satis�es (H2) and a 2 C(IRN � [0;+1)) is abounded nonnegative funtion suh that pa is Lipshitz ontinuous in x, uniformly withrespet to t: Sine it is not obvious, we hek the third statement of (H1). Without lossof generality, we an suppose a � 1; the dimension of the spae N = 1 and q � p � 0:We have �(p)� �(q) = 1(1 + p2)�=2  1� �1 + p2 � q21 + q2 ��=2! :From the inequality 1� (1 + x)�=2 � �x for �1 � x � 0; we get�(p)� �(q) � 1(1 + p2)�=2 (q � p)(p+ q)1 + q2 � 2q1 + q2 (p� q):Sine we assumed 0 � p � q; we an �nd a onstant C independent of p; q suh that2q=(1 + q2) � C=(1 + p+ q): It gives the onlusion.2. Non geometri urvature ow:�u�t � div Dup1 + jDuj2 = 0:3. Consider�u�t � Tr[A(x; t)�I � Du
Du1 + jDuj2�A(x; t)D2u℄ +H(x; t; u;Du) = 0;6



If A is a bounded ontinuous funtion from IRN � [0;+1) into MN , Lipshitz in x(uniformly in t) and H satis�es (H2), then our results apply. In partiular,�u�t � a(x; t)p1 + jDuj2 div Dup1 + jDuj2 + (x; t)! = 0ful�lls the assumptions as soon as the ontinuous funtions a;  are bounded, a is nonneg-ative and pa;  are Lipshitz ontinuous in x uniformly in t: If a � 1 and  is onstant,then we reognize the geometri eikonal equation. The mean urvature equation for graphs(a � 1 and  � 0) is studied in great details in the following setion.4. �u�t � sup�2ATr[b�(x; t;Du)D2u℄ + sup�2BH�(x; t; u;Du) = 0;when (H1) holds for b� and (H2) holds for H� with onstants independent of �; �:5. With minor adaptations in the proof of the omparison result we an deal with�u�t � f �Tr[b(x; t;Du)D2u℄�+H(x; t; u;Du) = 0;under (H1) and (H2) for a nondereasing nonnegative funtion f whih satis�es, forevery z; z0 2 IR; f(z)� f(z0) � Cjz0 � zj�;with � 2 [0; 1℄:3 Appliation to the mean urvature equationOur main motivation is to prove some uniqueness results for the mean urvature equationfor graphs. In this setion, we reall some fats about this equation and show that itenters the framework of Theorem 2.1. We then apply these results to the mean urvatureow for entire graphs in IRN+1:We an write the mean urvature equation in di�erent forms. To follow the notationsof the previous setion, we will write it as�u�t � Tr �b(Du) D2u� = 0; (5)where, for every p 2 IRN , b(p) = I � p
 p1 + jpj2 : (6)The same equation is often written�u�t ��u+ hD2uDu;Dui1 + jDuj2 = 0 in IRN � (0;+1); (7)7



or in divergene form�u�t �p1 + jruj2 div rup1 + jruj2! = 0: (8)The operator b de�ned by (6) maps IRN into S+N . For every p 2 IRN ; we an de�nethe positive symmetri square root b1=2 (p) of b(p) 2 S+N : The following lemma providessome properties of b1=2 .Lemma 3.1 For every p 2 IRN ;b1=2 (p) = I � 1p1 + jpj2(1 +p1 + jpj2)p
 p:Moreover, b1=2 is bounded and Lipshitz ontinuous in IRN ; there exists a positive onstantC suh that, for every p; q 2 IRN ;kb1=2 (p)� b1=2 (q)k � Cjp� qj1 + jpj+ jqj : (9)Proof of Lemma 3.1. We �rst ompute b1=2 . For every q 2 (Span p)?; b(p)q = q andb(p)p = p=(1+jpj2). It follows that we an look for b1=2 in the form b1=2 (p) = I�f(p)p
p.Then, an easy alulation gives the result. Looking at the formula, it is lear that b1=2 isontinuous and bounded.To hek (9), we writekb1=2 (p)� b1=2 (q)k = kf(q)q 
 q � f(p)p
 pk= kq 
 (q � p)f(q) + (q � p)
 pf(q) + p
 p(f(q)� f(p))k� (jqjf(q) + jpjf(q))jp� qj+ jpj2jf(p)� f(q)j:Without loss of generality, we an take jqj � jpj. On the one hand,jqjf(q) + jpjf(q) � 2jqjf(q) � 2jqjp1 + jqj2(1 +p1 + jqj2) � 21 +p1 + jqj2� 21 + jqj � 21 + 12(jpj+ jqj) � 41 + jpj+ jqj : (10)On the other hand, by setting g(p) =p1 + jpj2;jpj2jf(q)� f(p)j � jpj2f(p)f(q) jg(p)(1 + g(p))� g(q)(1 + g(q))j� jpj2f(p)f(q) j1 + g(p) + g(q)j jg(p)� g(q)j :8



But a straightforward alulation shows that jg(p)�g(q)j � jp�qj and that the appliation(p; q) 7! jpj2f(p)f(q)j1 + g(p) + g(q)j(1 + jpj+ jqj)is ontinuous and bounded on the set f(p; q) 2 IR2N : jpj � jqjg thus there exists aonstant C1 > 0 suh that for every p; q 2 IRN ; jpj � jqj; we havejpj2f(p)f(q) j1 + g(p) + g(q)j jg(p)� g(q)j � C1jp� qj1 + jpj+ jqj : (11)Combining (10) and (11), we obtain the result with C = 4 + C1: 2Thanks to the previous lemma and the existene of a smooth solution to (7) (f. [12℄,[14℄ and [3℄) we getTheorem 3.1 Assume that u0 2 C(IRN) satis�es (H3-u0)(�), with 0 � � < (1 +p5)=2.Then (7) (or equivalently (5) or (8)) has a unique solution u 2 C(IRN � [0;+1)) \C1(IRN � (0;+1)) in Cpoly:We turn to a geometrial appliation to the so-alled level-set approah to the generalizedevolution of hypersurfaes by their mean urvature. This method, introdued for numer-ial omputations by Osher and Sethian [19℄, was developed theoretially by Evans andSpruk [13℄ and Chen, Giga and Goto [7℄.Let us reall briey the level-set approah in the ase of the mean urvature motionof entire graphs. We onsider the graph of the initial datum u0 2 C(IR) of (7) as anhypersurfae �0 = f(x; y) 2 IRN�IR : u0(x) = yg of IRN+1. De�ne 
0 = f(x; y) 2 IRN+1 :u0(x) < yg. We take a uniformly ontinuous funtion v0 : IRN+1 ! IR suh that�0 = f(x; y) 2 IRN+1 : v0(x; y) = 0g and 
0 = f(x; y) 2 IRN+1 : v0(x; y) > 0g (12)(hoose the signed-distane to �0 for instane). Next, we onsider a funtion v : IRN+1 �(0;+1) ! IR suh that v(x; u(x; t); t) = 0 where u is a solution of (7). Formally, v hasto satisfy the well-known geometrial mean urvature equation8<: �v�t ��v + hD2vDv;DvijDvj2 in IRN+1 � (0; T );v(�; �; 0) = v0 in IRN+1 :This equation admits a unique visosity solution v 2 UC(IRN+1 � [0;+1)) for everyinitial datum v0 2 UC(IRN+1), where UC denotes the uniformly ontinuous funtions.Moreover, the level-set approah works: it means that we an de�ne, for every t 2 [0; T ℄;�t = f(x; y) 2 IRN+1 : v(x; y; t) = 0g and 
t = f(x; y) 2 IRN+1 : v(x; y; t) > 0g;9



the sets (�t)t and (
t)t depend only on the initial sets �0 and 
0 but not on the hoieof v0: The family (�t)t is alled the generalized evolution by mean urvature of the graph�0 and �t is alled the front. A natural issue is the onnetion between this generalizedevolution and the lassial motion by mean urvature of the graph of u0. Note that �t isde�ned as the 0-level-set of a uniformly ontinuous funtion; it may be very irregular ingeneral and an even develop an interior in IRN+1. In our ontext, we haveTheorem 3.2 If u0 2 C(IRN) satis�es (H3-u0)(�), with 0 � � < (1 +p5)=2, then, forevery t 2 [0; T ℄, the set �t is a entire smooth graph, namely�t = f(x; y) 2 IRN+1 : y = u(x; t)g;where u is the unique smooth solution of (7) with initial datum u0. Moreover, the evolutionof �t agrees with the lassial motion by mean urvature in the sense of the di�erentialgeometry.Proof of Theorem 3.2. From [3℄, we know that, if we start with an hypersurfae �0 whihis an entire ontinuous graph in IRN � IR, then, for every t 2 [0; T ℄,�t = f(x; y) 2 IRN+1 : u�(x; t) � y � u+(x; t)g;where u� and u+ are respetively the minimal and the maximal (disontinuous) visositysolution of (7). In the speial ase of the mean urvature equation, we proved that theboundary of the front �t is smooth. It follows that u� and u+ are smooth. At this step,we aim at applying Theorem 3.1 to show that u� = u+. To do it, we need to know thatu�; u+ 2 Cpoly: Note that Corollary 2.1 is not suÆient beause we suppose, a priori, thatthe solution has a polynomial growth. To overome this diÆulty, we invoke a L1 loalbound for (7) (see [3℄): there exists a onstant C suh that, for every (x; t) 2 IRN � [0; T ℄;ju(x; t)j � maxfju0(y)j+p2Ct : y 2 �B(x;p2Ct)g:From (H3-u0)(�), there exists a positive onstant ~C suh that ju0(y)j � ~C(1+ jyj1+�): Itfollows ju(x; t)j � ~C(1 + (jxj+p2Ct)1+�) +p2CT;whih proves the laim.It implies u�; u+ 2 Cpoly and from Theorem 3.1, we obtain u� = u+ := u. Finally,�t = Graph(u(�; t)) is a smooth submanifold of IRN+1 (in partiular, �t never fattens). Inthis ase, the generalized evolution �ts in with the lassial evolution by mean urvature(see Evans and Spruk [13℄ and [14℄ for the agreement with an alternative generalizedmotion). 2We refer to [3℄ and [5℄ for some more general geometrial motions. In these works, weassoiate a geometrial motion to some quasilinear equations of the type (2) for whihthe above tehniques apply. 10



4 Proof of Theorem 2.11. We argue by ontradition assuming that there exists (~x; ~t) 2 IRN � [0; T ℄ suh thatu(~x; ~t) > v(~x; ~t): (13)For "; � > 0; p � k > maxf2; � + 1g to be hosen later on, we introdue the funtionsde�ned by : for every x0; y0 2 IRN ,K(x0) := 1 + jx0jk; '(y0) := jy0jp"p and 	(x0; y0) := K(x0)('(y0) + �):Then we onsider the test-funtion given by : for every x; y 2 IRN ;�(x; y; t) := eLt	(x+ y; x� y) + �t;where L; � > 0.2. The �rst step of the proof is theLemma 4.1 Under the assumptions of Theorem 2.1, there exists a onstant C > 0 suhthat, for any x 2 IRN and t 2 [0; T ℄;u(x; t) � C(1 + jxj�+1) and v(x; t) � �C(1 + jxj�+1) : (14)Moreover, if p � k > � + 1, thesup(x;y;t)2(IRN )2�[0;T ℄�u(x; t)� v(y; t)� �(x; y; t)	is �nite and is ahieved at a point (�x; �y; �t). Finally, we an hoose the parameters �, �and " small enough in order to have a positive supremum and j�x� �yj � 1.We postpone the proof of this lemma to the end of the setion. From now on, we supposethat the supremum is positive and that j�x� �yj � 1.3. The idea of the proof is the following : the seven next steps are devoted to show thatwe an �x the parameters in � in order to fore the maximum to be ahieved at timet = 0. The last step deals with the ase t = 0. We prove that the partiular form of thetest-funtion and the assumption about the modulus of ontinuity of the initial data leadto a ontradition with (13) whih will be the end of the proof.4. We �rst onsider the ase when the supremum is ahieved at a point suh that �t > 0.By applying the fundamental result of the Users' guide to visosity solutions ([9,Theorem 8.3℄), we know that, for every � > 0, there exist a1; a2 2 IR and X; Y 2 SN suhthat (a1; Dx�(�x; �y; �t); X) 2 �P2;+(u)(�x; �t) ;11



(a2;�Dy�(�x; �y; �t); Y ) 2 �P2;�(v)(�y; �t) ;a1 � a2 = ���t (�x; �y; �t) ;and � X 00 �Y � � A+ �A2 where A = D2�(�x; �y; �t) : (15)Therefore, sine u and v are respetively sub- and supersolution of (2), we havea1 � Tr [b(�x; �t; Dx�(�x; �y; �t))X℄ +H(�x; �t; u(�x; �t); Dx�(�x; �y; �t)) � 0 (16)and a2 � Tr [b(�y; �t;�Dy�(�x; �y; �t))Y ℄ +H(�y; �t; v(�y; �t);�Dy�(�x; �y; �t)) � 0: (17)By subtrating (17) from (16), we obtain� + L�(�x; �y; �t) � Tr [b(�x; �t; Dx�(�x; �y; �t))X℄� Tr [b(�y; �t;�Dy�(�x; �y; �t))Y ℄+H(�y; �t; v(�y; �t);�Dy�(�x; �y; �t))�H(�x; �t; u(�x; �t); Dx�(�x; �y; �t)): (18)In order to show that the maximum annot be ahieved for �t > 0, we have to prove thatthis inequality annot hold for a suitable hoie of the parameters and, to do so, we haveto estimate the right-hand side of this inequality.5. For the sake of notational simpliity, we write�x = �(�x; �t; Dx�(�x; �y; �t)) and �y = �(�y; �t;�Dy�(�x; �y; �t))and omit in the following omputations the dependene on (�x; �y; �t) when there is noambiguity. For any orthonormal basis (ei)1�i�N=1 of IRN , we haveTr [b(�x; �t; Dx�(�x; �y; �t))X � b(�y; �t;�Dy�(�x; �y; �t))Y ℄ = Tr ��TxX�x � �Ty Y �y�= NXi=1 hX�xei; �xeii � hY �yei; �yeii : (19)On an other hand, we an write (15) as, for all �; � 2 IRN ;hX�; �i � hY �; �i � eL�thD2xx	(� + �); � + �i+ 2eL�thD2xy	(� + �); � � �i+ eL�thD2yy	(� � �); � � �i+ �hA2(�; �); (�; �)i:12



Using this last inequality with � = �xei and � = �yei in (19) and letting � go to 0, (18)beomes � + L� � A1 +A2 +A3 +A4; (20)where 8>>>>>><>>>>>>:
A1 = eL�tkD2xx	k k�x + �yk2;A2 = 2eL�tkD2xy	k k�x + �yk k�x � �yk;A3 = eL�tkD2yy	k k�x � �yk2;A4 = H(�y; �t; v(�y; �t);�Dy�)�H(�x; �t; u(�x; �t); Dx�):In the fourth next steps, we estimate the Ai; 1 � i � 4. These estimates are heavy toobtain but the basi idea is easy: we want to prove that, for a suitable hoie of parameters,eah jAij is bounded by �C� + �, where �C is a �xed onstant and � is suÆiently small.It will lead to a ontradition with (20) if we take L large enough.In all the estimates below, C will denote a onstant whih may vary from line to line,may depend on k, p but not on ", � and L.6. Estimate of A1.We have kDxx	k � k(k � 1)j�x+ �yjk�2('+ �):From (4), we getA1 � 2eL�tC2k(k � 1)j�x+ �yjk�2((1 + j�xj)2 + (1 + j�yj)2)('+ �):But, sine j�x� �yj � 1, we an ompare both j�xj and j�yj with j�x+ �yj. It follows that thereexists a onstant C = C(k) suh thatA1 � CeL�tK('+ �): (21)7. Estimate of A2.An expliit omputation gives D2xy	 = DK 
 D'. We may assume without loss ofgenerality that �x 6= �y or equivalently D' 6= 0 sine otherwise A2 would be 0 and ausesno problem.From inequalities (4) and j�x� �yj � 1, we then obtainA2 � 2CeL�tjDKjjD'j(3 + j�x+ �yj)k�x � �yk: (22)Using (H1), we havek�x � �yk � k�(�x; �t; Dx�)� �(�y; �t; Dx�)k + k�(�y; �t; Dx�)� �(�y; �t;�Dy�)k� Cj�x� �yj+ C jDx� +Dy�j1 + jDx�j+ jDy�j :13



But Dx� = eL�t(DK('+ �) +KD') and Dy� = eL�t(DK('+ �)�KD'). We obtaink�x � �yk � Cj�x� �yj+ C 2eL�tjDKj('+ �)1 + 12(jDx� +Dy�j+ jDx��Dy�j)� Cj�x� �yj+ 2C jDKj('+ �)KjD'j : (23)Combining this last inequality with (22) and using thatjDKj = kj�x+ �yjk�1 and jD'j = p j�x� �yjp�1"p ;show that there exists a positive onstant C = C(k; p) suh thatA2 � CeL�tK('+ �): (24)8. Estimate of A3.This step is the most tehnial one. First, the omputation of D2yy	 givesA3 � eL�tKkD2'k k�x � �yk2and we havek�x � �yk2 = k�(�x; �t; Dx�)� �(�y; �t; Dx�)k2+2 k�(�x; �t; Dx�)� �(�y; �t; Dx�)k k�(�y; �t; Dx�)� �(�y; �t;�Dy�)k+ k�(�y; �t; Dx�)� �(�y; �t;�Dy�)k2 :It follows jA3j � 2K eL�t k�(�x; �t; Dx�)� �(�y; �t; Dx�)k2 kD2'k+2K eL�t k�(�y; �t; Dx�)� �(�y; �t;�Dy�)k2 kD2'k: (25)We estimate separately the two terms whih appear in the right-hand side (25). For the�rst one, using (H1), we obtain2K eL�t k�(�x; �t; Dx�)� �(�y; �t; Dx�)k2 kD2'k � 2C2p(p� 1) eL�tK' (26)beause j�x� �yj2kD2'k � p(p� 1)'.The estimate of the seond term is the hardest one. Again we may assume without
14



loss of generality that �x 6= �y or equivalently D' 6= 0; we haveseond term = 2K eL�t k�(�y; �t; Dx�)� �(�y; �t;�Dy�)k2 kD2'k� 2CKeL�t j�x� �yjp�2"p � CjDx� +Dy�j1 + jDx�j+ jDy�j�2� 2CKeL�t j�x� �yjp�2"p � jDx� +Dy�j1 + 12 (jDx� +Dy�j + jDx��Dy�j)�2� 2CKeL�t j�x� �yjp�2"p � 2eL�t('+ �)jDKj1 + eL�t('+ �)jDKj+ eL�tKjD'j�2� 2CKeL�t j�x� �yjp�2"p �eL�t('+ �)jDKj�2(eL�t('+ �)jDKj)2� (eL�tKjD'j)2�for every positive �; � suh that �+ � � 1.We now distinguish two ases.| 1st ase. If ' � �, then taking � = 0 and � = 1, we getseond term � 2CKeL�t jx� yjp�2"p e2L�t'2jDKj2e2L�tK2jD'j2� 2CKeL�t'� jDKjK �2� 2CKeL�t': (27)| 2nd ase. Otherwise, � � '. Thenseond term � 2CKeL�t j�x� �yjp�2"p �eL�t�jDKj�2(eL�t�jDKj)2� �eL�tK pj�x��yjp�1"p �2�� 2CK1�2�eL�t(3�2��2�)j�x� �yjp�2�2�(p�1) "�p+2�p (�jDKj)2�2� :We hoose � = p� 22(p� 1) and this yieldsseond term � 2Ce3L�t"� pp�1�2�2�K 1p�1 jDKj2�2�:From now on, we take p > k + 1 (28)and we hoose � = 12 � �2 with � = p� k � 1(p� 1)(k � 1) : (29)15



Using that jDKj � kK k�1k ; we obtainseond term � 2Ce3L�t"� pp�1�2�2�K 1p�1+ (2�2�)(k�1)k� 2Ce3L�t"� pp�1���K : (30)Combining (27) and (30), we obtainseond term � maxn2CeL�tK'; 2Ce3L�t"�p=(p�1) �� �Ko ; (31)and from (26) and (31), we getjA3j � CeL�tK'+ CKeL�t('+ �)+maxn2CeL�tK'; 2Ce3L�t "�p=(p�1) �� �Ko� CmaxneL�tK('+ �); e3L�t "�p=(p�1) �� �Ko ; (32)where C is a positive onstant independent of ", �, L and �.9. Estimate of A4:Sine we have 0 < �(�x; �y; �t) � u(�x; �t)� v(�y; �t)and sine u 7! H(�; �; u; �) is nondereasing, we �rst getA4 = H(�y; �t; v(�y; �t);�Dy�)�H(�x; �t; u(�x; �t); Dx�)� H(�y; �t; u(�x; �t);�Dy�)�H(�x; �t; u(�x; �t); Dx�):Then, using (H2), it follows thatA4 � jH(�y; �t; u(�x; �t);�Dy�)�H(�y; �t; u(�x; �t); Dx�)j+jH(�y; �t; u(�x; �t); Dx�)�H(�x; �t; u(�x; �t); Dx�)j� m ((1 + j�yj)jDx� +Dy�j) +m ((1 + jDx�j)j�x� �yj) :Beause of the properties of a modulus of ontinuity, for every r > 0 and every  > 0,there exists a positive onstant C() suh that m(r) �  + C()r: Taking  = �=2 andup to replae at eah step C(�) by a larger one whih depends only on �, we obtainA4 � �2 + C(�)�(1 + j�yj)jDx� +Dy�j+ (1 + jDx�j)j�x� �yj�� �2 + C(�)�eL�t(1 + j�yj)jDKj('+ �) + (1 + eL�t(jDKj('+ �) +KjD'j))j�x� �yj�� �2 + C(�)�eL�tK('+ �) + j�x� �yj� :16



But from Young's inequality, we havej�x� �yj � j�x� �yj"p + "q � K('+ �) + "qand �nally, we obtain A4 � � + C(�) �eL�tK('+ �) + "q� ; (33)where C(�) is a positive onstant independent of �; " and L.10. End of the ase �t > 0.Plugging estimates (21), (24), (32) and (33) in (20) yields� + L� � �2 + (C + C(�))� + C e3L�t "�p=(p�1) �� �K + C(�)"q;where C is a positive onstant whih is independent of ", �, � and L. Thus, we an �rsthoose a onstant L large enough, namely L(�) � C + C(�) + 1; suh that the previousinequality beomes �2 + � � C e3L�t "�p=(p�1) �� �K + C(�) "q; (34)for every positive "; � and �: Then we take � = "`, hoosing ` large enough suh that�` > pp� 1 : (35)Thus (34) reads �2 + eL�tK('+ �) � C e3LT "�`�p=(p�1) �K + C(�)"q:Taking " small enough suh that C(�)"q < �=2 and C e2LT "�`�p=(p�1) � 1; we obtain aontradition. Finally, the onlusion of the preeding steps is: if we hoose L; p and kas above and take � = "` (where ` satis�es (35)), then neessarily �t = 0 for suÆientlysmall ".11. From the previous step, we know that the maximum of the funtion u � v � � isahieved at a point (�x; �y; 0) whih implies, from (13) and Lemma 4.1, that there existsÆ > 0 suh that0 < Æ � u(~x; ~t)� v(~x; ~t)� "` eL~tK(2~x)� �~t � u(�x; 0)� v(�y; 0)�K(�x+ �y)('+ "`);for " and � small enough. Sine u(�x; 0) � u0 � v(�y; 0), this inequality leads toÆ � u0(�x)� u0(�y)�K(�x+ �y)('+ "`):17



Now, from (H3-u0)(�), there exists C(Æ) > 0 suh thatÆ � m ((1 + j�xj+ j�yj)�j�x� �yj)�K(�x + �y)('+ "`)� Æ2 + C(Æ)(1 + j�xj+ j�yj)�j�x� �yj �K(�x + �y)('(�x� �y) + "`): (36)Sine j�x� �yj � 1, there exists ~C suh that (1+ j�xj+ j�yj)� � ~C(1 + j�x+ �yj�) and therefore(36) yieldsÆ2 � C(Æ) ~C(1 + j�x+ �yj�)j�x� �yj � (1 + j�x+ �yjk)� j�x� �yjp"p + "`� : (37)In order to study the right-hand side of this inequality, we introdue the funtion g de�nedby g(r; s) = C(Æ) ~C(1 + r�)s� (1 + rk)�sp"p + "`� ;for every r; s � 0: One easily shows that there exists a onstant C depending only onC(Æ); ~C and p suh thatg(r; s) � C (1 + r�) pp�1(1 + rk) 1p�1 " pp�1 � "`(1 + rk): (38)Then, using that, for every r > 0; (1 + r�) pp�1(1 + rk) 1p�1 � ~C(1 + r �p�kp�1 ), with ~C = ~C(N; �; p; k), weobtain from (38) g(r; s) � f(r) := C ~C �1 + r �p�kp�1 � " pp�1 � (1 + rk)"`; (39)for every r; s � 0: We take p large enough suh that�p� k > 0: (40)Sine, in addition, we have already hosen k > � + 1 at the beginning, the funtion fahieves a maximum at r = C 0" `(p�1)�pp(��k) ;where the C 0 depends only on C; ~C; p; �; k: Replaing r by this value, we obtain that forevery r � 0; f(r) � C ~C" pp�1 + �C"; (41)where �C is a onstant depending on C; ~C; p; �; k and = kp� `(�p� k)p(k � �) :18



From (37),(39) and (41), we obtainÆ2 � C �" pp�1 + "�with C is a onstant depending only on Æ; �; p; k and N .In order to onlude through the above inequality by letting " tend to 0, we need tohave  > 0 i.e. to be able to hoose the parameters in suh a way to have ` < kp�p� ksine �p� k > 0 from (40). To do so, we reall that we have hosen k > maxf2; � +1g atthe beginning, p > k + 1 (see (28)) and ` > p�(p� 1) (see (35)) where � = p� k � 1(p� 1)(k � 1)(see (29)). Thus, we need to �nd `; k and p suh thatk > maxf2; � + 1g; p > k + 1; �p > k and p(k � 1)p� k � 1 < ` < kp�p� k : (42)To ful�ll the last ondition in (42), it is suÆient to have p(� � k(� � 1)) > 2k: It followsthat, if we an �nd a suitable k; up to take p large enough, then all the onditions wouldbe satis�ed. We distinguish two ases:| 1st ase. If � � 1; then we take k > 2 and we are done.| 2nd ase. If � > 1, then we have to �nd k suh that� + 1 < k < �� � 1 :It leads to a ondition on �; namely �2 < � + 1 whih is automatially satis�ed provided� < 1 +p52 as we supposed it.Finally, in any ase, it is possible to ful�ll onditions (42); thus the proof of the theo-rem is omplete. 2Now we turn to the proof of the Lemma.Proof of Lemma 4.1. We �rst prove (14). We are going to do it only for the subsolutionu, the proof for the supersolution v being analogous.To do so, we introdue for C, L, " > 0; k � 2 and the sequene of smooth funtions(�")" de�ned by �"(x; t) = eLt �C(1 + jxj2) �+12 + "(1 + jxjk)� :Tedious but straightforward omputations show that, for any C, � and k, if L is hosenlarge enough, then �" is a strit supersolution of (2) for any " small enough.On an other hand, sine u(x; 0) � u0(x) in IRN and sine u0 satis�es (H3-u0)(�), itis lear that if C is hosen large enough, then u(x; 0) � �"(x; 0) in IRN .19



Finally sine u is in Cpoly, we have, for k large enough u(x; t)=(1 + jxj)k ! 0 whenjxj ! +1 uniformly for t 2 [0; T ℄ and therefore u(x; t) � �"(x; t) for jxj large enough.Using these three properties, one shows easily that u(x; t) � �"(x; t) in IRN � [0; T ℄ :indeed, beause of the last one, u� �" ahieves its maximum on IRN � [0; T ℄ but sine uis a visosity subsolution of (2) and �" is a strit smooth supersolution of this equation,this maximum annot be ahieved for t > 0. Therefore it is ahieved for t = 0 and themaximum is therefore negative, proving the laim. Letting " tend to 0 yields (14).Now we prove the seond part of the lemma. Sine u(x; t)�v(y; t)��(x; y; t) is upper-semiontinuous, in order to prove that the supremum is ahieved, it suÆes to prove thatthis funtion tends to �1 when jxj; jyj ! +1 (uniformly with respet to t 2 [0; T ℄). ButeLtK(x+ y) ('(x� y) + �) + �t � jx� yjp"p + �(1 + jx+ yjk)� min��; 1"p��jx� yjp + 1 + jx+ yjk� : (43)Sine p � k > maxf2; � + 1g; using the onvexity of r 7! rk, we havejx� yjp + 1 + jx+ yjk � jx� yjk + jx+ yjk � jxjk + jyjk:From (43) and (14), it followsu(x; t)� v(y; t)� �(x; y; t) � u(x; t)� v(y; t)�min��; 1"p��jxjk + jyjk�� C �1 + jxj�+1 + jyj�+1��min��; 1"p��jxjk + jyjk�whih proves the laim sine � + 1 < k.On an other hand, we haveu(�x; �t)� v(�y; �t)� �(�x; �y; �t) � u(~x; ~t)� v(~x; ~t)� eL~tK(2~x)�� �~t:From (13), the right-hand side is positive if � and � are suÆiently small.For � and � suÆiently small, we have0 < u(�x; �t)� v(�y; �t)� �(�x; �y; �t) � C �1 + j�xj�+1 + j�yj�+1�� eL�tK(�x + �y)('+ �)� ��t:By using the onvexity of r 7! r�+1, it follows�1 + j�x+ �yjk�� j�x� �yjp"p + �� � C �1 + j�x+ �yj�+1 + j�x� �yj�+1� :Sine � + 1 < k, we obtain j�x� �yjp"p � C �1 + j�x� �yj�+1�whih implies that j�x � �yj � 1 for " small enough sine p > � + 1. And the proof of thelemma is omplete. 220



5 Proof of Corollary 2.1The uniqueness part in the statement of Corollary 2.1 is an immediate onsequene ofTheorem 2.1. In this setion, we prove the existene result using Perron's method. Forthe desription of this method in the ontext of visosity solutions, we refer to Ishii [17℄and Crandall, Ishii and Lions [9℄.A straightforward omputation shows that, if C > 0 and L are large enough, thenu(x; t) = �C eLt(1 + jxj2) �+12 and u(x; t) = C eLt(1 + jxj2) �+12 are respetively visositysub- and supersolution of (2).We de�ne the set S in the following way : an loally bounded, possibly disontinuous,funtion w de�ned on IRN � [0; T ℄ is in S if u � w � u on IRN � [0; T ℄ and if w� is avisosity subsolution of (2) satisfying the initial ondition in the visosity sense, i.e.min��w�t � Tr �b(x; 0; Dw)D2w�+H(x; 0; w;Dw); w�(x; 0)� u0(x)� � 0 (44)in IRN � f0g. Then we set u(x; t) = supw2Sw(x; t):Classial arguments show that u is still a subsolution. Moreover, when a subsolutionw satis�es the initial ondition (44), it is well-known (see [1℄ for instane) that w�(x; 0) �u0(x) for all x 2 IRN : From the de�nition of u; it follows u�(x; 0) � u0(x) for all x 2 IRN :From Perron's method, u is a supersolution whih satis�es the initial ondition (44)where we replae \min" by \max", \w�" by \w�" and \�" by \�". As above, it followsu�(x; 0) � u0(x) for all x 2 IRN :Finally, we have u�(�; 0) � u0 � u�(�; 0) in IRN : Applying our omparison result(Theorem 2.1) to u� and u�; we obtain u� � u� whih means that u is a ontinuousvisosity solution of (2) with initial datum u0: 2Referenes[1℄ G. Barles: Solutions de visosit�e des �equations de Hamilton-Jaobi. Springer-Verlag,Paris, 1994[2℄ G. Barles, S. Biton, and O. Ley: Quelques r�esultats d'uniit�e pour l'�equation demouvement par ourbure moyenne dans IRn. ESAIM: Proeedings, Ates du 32�emeCongr�es d'Analyse Num�erique : Canum 2000 8, 1{12 (2000)[3℄ G. Barles, S. Biton, and O. Ley: A geometrial approah to the study of unboundedsolutions of quasilinear paraboli equations. Arh. Rational Meh. Anal. 162, 287{325 (2002) 21
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