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Abstract

We prove a non fattening condition for a geometric evolution described by the
level set approach. This condition is close to those of Soner [21] and Barles, Soner
and Souganidis [5] but we apply it to some unbounded hypersurfaces. It allows
us to prove uniqueness for the mean curvature equation for graphs with convex at
infinity initial data, without any restriction on its growth at infinity, by seeing the
evolution of the graph of a solution as a geometric motion.

1 Introduction

We consider the evolution Γt of a given initial hypersurface Γ0 of R
N+1 moving according

to the normal velocity

V(x,t) = h(nx, Dnx), (1)

where nx and Dnx stand respectively for an oriented unit normal and the second funda-
mental form of Γt at x ∈ Γt and h is the given evolution law. The hypothesis on h will
be introduced later but the key assumption in this paper is the map h to be elliptic with
respect to the second variable. Namely, if X, Y are symmetric matrices, then

X ≤ Y =⇒ h(nx, X) ≥ h(nx, Y ). (2)

The most typical example we are interested in is the celebrated mean curvature evolution
where

V(x,t) = h(Dnx) = −Tr(Dnx). (3)
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To describe the evolution of Γt according to (1), different ways have been proposed;
see the book of Giga [13]. Here, we follow the level set approach introduced by Barles [1]
and Osher and Sethian [20], developed first independently by Evans and Spruck [12] and
Chen, Giga and Goto [8].

The level set approach presents the advantage to be defined for all time t ≥ 0, even past
some singularities. We refer the reader to Section 2 for the definition and recall here that
the evolution Γt by the level set approach is given, at each time t, as the 0-level set of an
auxiliary function, namely Γt := {z ∈ R

N+1 : v(z, t) = 0}, where v : R
N+1 × [0, +∞) → R

is the solution of a suitable parabolic partial differential equation under the form

∂v

∂t
+ F (Dv, D2v) = 0 in R

N+1 × (0, +∞). (4)

In this approach, one of the main issues is the so-called fattening phenomenon which
happens when the front

⋃

t≥0 Γt × {t} has nonempty interior in R
N+1 × [0, +∞). Some

examples are known for which such a phenomenon arises (see Ilmanen [16] or Soner [21]).
This fattening phenomenon is closely related to the non-uniqueness of the geometrical
evolution (1). We refer to Ilmanen [16], Soner [21], Barles, Soner and Souganidis [5] or
Barles, Biton and Ley [3] for further details.

Nevertheless, in [21] and [5] (see also [22] and [19]), the authors give sufficient condi-
tions such that the front never fattens. For instance, Soner proves that compact hyper-
surfaces which are strictly starshaped never fatten for evolutions with normal velocity of
curvature type given (see Section 4.1).

Our aim in this article is to extend this method to unbounded sets which are entire
graphs of functions from R

N into R. Even if Soner’s condition could be applied for some
unbounded hypersurfaces (like convex graphs), it does not hold for the case we have in
mind (graphs which are convex at infinity, see below). In [5], the authors give a more
general condition for C2 hypersurfaces but it is not clear how to extend it to unbounded
cases.

To be more specific on our result, let Γ0 be the boundary of an open subset Ω0 of R
N+1

(notice that Γ0 has empty interior). We prove that under suitable assumptions on the
nonlinearity F appearing in (4), the front never fattens if there exists a family of affine
dilations (Aε)ε>0 going to identity as ε goes to 0 and such that

d(Γ0,Aε(Γ0)) := inf{|a − b| : (a, b) ∈ Γ0 ×Aε(Γ0)} is positive for any ε > 0. (5)

This condition is close to the one of [5] but is stated in a more readable way which does
not require the initial set Γ0 to be C2.

Our main contribution is to show that this condition can be used to prove the unique-
ness of the evolution by mean curvature of entire graphs which are convex at infinity. We
say that a continuous function f : R

N → R is convex at infinity if there exists R > 0 such
that, for any convex set C ⊂ R

N\B(0, R), the restriction f : C → R is convex. Our result
is the following:
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Theorem 1.1 For any continuous initial data u0 : R
N → R which is convex at infinity

(without any growth restriction), there exists a unique solution of the mean curvature
equation for graphs

∂u

∂t
− ∆u +

〈D2uDu, Du〉

1 + |Du|2
= 0 in R

N × (0, +∞), (6)

with u(·, 0) = u0.

The existence of a smooth solution u ∈ C(RN × [0, +∞))∩C∞(RN ×(0, +∞)) was proved
by Ecker and Huisken [11]. The very surprising fact is that this result holds without any
growth restriction at infinity.

The question of uniqueness of these solutions without growth restriction at infinity is
still open in the whole generality. Several partial results are known: In dimension N = 1,
the problem was completely solved independently by Chou and Kwong [9] and in [4]; In
any dimension, uniqueness was proved in the following situations: with polynomial-type
restrictions on the growth of u0 in [2], when u0 is radially symmetric in R

N in [7] and
when u0 is convex in R

N in [3]. After this paper was completed we learned that Ishii and
Mikami had obtained in [18] an uniqueness result for the motion of a graph by R-curvature
under some convexity at infinity-type condition.

One could think that Theorem 1.1 is an easy generalization of the latter case but we
point out that a very small perturbation of u0 even on a compact set can modify the
behaviour of the solution everywhere.

The uniqueness result of Theorem 1.1 holds in fact for more general quasilinear equa-
tions the class of which is described in [3] (see Section 4.2). Moreover, we give an example
(see Remark 4.1) of application of (5) to initial data which are not convex at infinity. It
follows first that the set of convex at infinity functions is not the right class of uniqueness
for equations like (6). Secondly, it emphasizes that our condition is of geometrical nature
in the sense that we do not have any idea of how to prove such a result by pdes’ methods.

The paper is organized as follows. In Section 2, we briefly recall the level-set approach.
In Section 3, we state and prove the sufficient condition (5). The last section is devoted
to the proof of Theorem 1.1 and to its extension to other motions.

2 Preliminary about the level set approach

In this section, we recall what we need about the level set approach and give the definition
of the generalized evolution Γt. For more details see the book [13].

We start by introducing some definitions and notations. Given an open subset Ω+
0

of R
N+1, we say that (Γ0, Ω

+
0 , Ω−

0 ) is an admissible partition if Γ0 = ∂Ω+
0 (∂ denotes the

topological boundary) and Ω−
0 = R

N+1\(Γ0 ∪ Ω+
0 ). Notice that Γ0 has an empty interior.

3



If (Γ0, Ω
+
0 , Ω−

0 ) is an admissible partition, then the signed distance ds(·, Γ0) to Γ0 is
defined by

ds(z, Γ0) :=







d(z, Γ0) if z ∈ Ω+
0 ,

0 if z ∈ Γ0,
−d(z, Γ0) if z ∈ Ω−

0 ,

where d is the usual nonnegative distance in R
N+1. Clearly ds(·, Γ0) ∈ UC(RN+1), where

“UC” denotes the uniformly continuous functions.
We aim at defining an evolution (Γt, Ω

+
t , Ω−

t )t≥0 starting from (Γ0, Ω
+
0 , Ω−

0 ) where Γt

evolves with normal velocity (1). Looking for an auxiliary function v : R
N+1× [0, +∞) →

R satisfying, for every t ≥ 0, the conditions

{v(·, t) = 0} = Γt {v(·, t) > 0} = Ω+
t and {v(·, t) < 0} = Ω−

t ,

we obtain that v has to be a solution, at least formally, of the so-called level set equation
for (1),







∂v

∂t
+ F (Dv, D2v) = 0 in R

N+1 × (0, +∞),

v(·, 0) = v0 in R
N+1,

(7)

where, for instance v0 = ds(·, Γ0), and

F (p, X) = −|p| h

(

−
p

|p|
,

(

−
1

|p|
(Id −

p ⊗ p

|p|2
)X

)

|p⊥

)

, (8)

for p ∈ D(F ) ⊂ R
N+1 and X ∈ SN+1. Here and in the sequel, SN+1 denotes the space of

symmetric matrices of size N + 1 and M|p⊥ is the restriction to the subspace p⊥ of the
linear map induced by M ∈ SN+1. Note that in general, F has singularities in the gradient
variable and D(F ) 6= R

N+1.
From the very definition of F , it follows that

F (λp, µp ⊗ p + λM) = λF (p, M) for all p ∈ D(F ), M ∈ SN+1, λ ≥ 0, µ ∈ R, (9)

and from (2), we have

M ≥ N =⇒ F (p, M) ≤ F (p, N) for all p ∈ D(F ), M, N ∈ SN+1. (10)

It is worth noticing that (9) implies that the equation in (7) is invariant under changes
of funtion v → ϕ ◦ v with ϕ′ > 0 whence we can work with bounded solutions of (7).

Moreover (2)-(10) imply that (7) is degenerate elliptic and a maximum principle is
expected. To avoid technicalities, we state the comparison principle as an assumption:

(H) If v (respectively w) be a bounded uniformly continuous viscosity subsolution (respec-
tively supersolution) of (7)-(8) satisfying v(·, 0) ≤ w(·, 0), then v ≤ w in R

N+1 × [0, +∞).
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Assumptions on F (or equivalently on h) which lead to this comparison principles are
discussed in Section 4. We refer to [10] for a general discussion of the theory of viscosity
solutions.

Now, we can state the following theorem and define the generalized evolution of Γ0

with normal velocity given by (1):

Theorem 2.1 Suppose that (2) and (H) hold. Then, for any v0 ∈ UC(RN+1), there
exists a unique UC viscosity solution of (7). Moreover, set

(Γ0, Ω
+
0 , Ω−

0 ) :=
(

{v0 = 0}, {v0 > 0}, {v0 < 0}
)

(11)

and consider

(Γt, Ω
+
t , Ω−

t ) :=
(

{v(·, t) = 0}, {v(·, t) > 0}, {v(·, t) < 0}
)

.

Then the family (Γt, Ω
+
t , Ω−

t )t≥0 is independent of the choice of v0 ∈ UC(RN+1) satisfying
(11). Hence, it allows to define (Γt)t≥0 as the generalized evolution of Γ0 with normal
velocity (1) starting from the initial admissible partition (Γ0, Ω

+
0 , Ω−

0 ).

We do not prove the theorem here. Various assumptions on F (or h) can be required
in order that (H) and the theorem holds true. In their celebrated papers, Evans and
Spruck [12] and Chen, Giga and Goto [8] proved in particular Theorem 2.1 for the mean
curvature evolution (3). In that case, the level set equation (7) is the well-known mean
curvature equation,

∂v

∂t
− ∆v +

〈D2vDv, Dv〉

|Dv|2
= 0 in R

N+1 × (0, +∞).

Other cases are treated in Giga, Goto, Ishii and Sato [14], Barles, Souganidis and Soner
[5], Soner [21], Ishii and Souganidis [19], Ishii [17], Souganidis [23], Giga and Sato [15],
Barles, Biton and Ley [3]. See the book of Giga [13] and Section 4 for explicit examples.

3 A sufficient condition for the non fattening

In this section we give a condition on an initial hypersurface Γ0 under which its generalized
evolution never fattens. To this end we need the following assumption: there exists a
positive continuous real-valued function m such that m(1) = 1 and

F (p, λM) = m(λ)F (p, M) for all p ∈ D(F ), M ∈ SN+1, λ > 0, (12)

where F is defined by (8). Let T be the group of affine dilations of R
N+1,

T =
{

A : R
N+1 → R

N+1 : A(z) = λz + z0, λ ∈ R\{0}, z0 ∈ R
N+1
}

.
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Lemma 3.1 Assume that (H) and (12) hold. Suppose that D(F ) is invariant under
dilations, that (Γ0, Ω

+
0 , Ω−

0 ) is an admissible initial partition and A ∈ T with coefficient
λ 6= 0. Let v (respectively vA) be the solution of (7) associated to ds(·, Γ0) (respectively
ds(·,A(Γ0))). Then we have

vA(z, t) = λ v

(

A−1z,
t

λm(λ)

)

.

Proof of Lemma 3.1. Suppose that Az = λz + z0. Let v0 = ds(·, Γ0), (respectively
w0 = ds(·,A(Γ0))) and v (respectively w) be the unique uniformly continuous solution of
(7) with initial data v0 (respectively w0). Observing that w0 = λv0 ◦ A

−1 we set

w(z, t) = λv

(

z − z0

λ
,

t

λm(λ)

)

.

Using (9) and (12), one checks that w is a solution of (7) with initial data w0. Therefore
we get the Lemma by the uniqueness result for (7). 2

Let A, B be two subsets of R
N+1. We define the minimum distance d(A, B) between

A and B by

d(A, B) := inf
a∈A,b∈B

|a − b|.

Lemma 3.2 For any admissible partitions (Γ0, Ω
+
0 , Ω−

0 ) and (Γ̃0, Ω̃
+
0 , Ω̃−

0 ), if Ω̃+
0 ∪Γ̃0 ⊂ Ω+

0

then
d(Γ0, Γ̃0) ≥ η ≥ 0 =⇒ ds(·, Γ0) ≥ ds(·, Γ̃0) + η.

Remark 3.1 A consequence of the comparison assumption (H) and Lemma 3.2 is an
inclusion principle which roughly states that, if Ω+

0 and Ω̃+
0 are such that Ω+

0 ⊂ Ω̃+
0 ,

then this inclusion remains true for all time: Ω+
t ⊂ Ω̃+

t . We point out that this inclusion
principle is an important underlying property of geometrical evolutions satisfying (2).
For a general study of geometrical evolutions which satisfies this principle, see Barles and
Souganidis [6].

Proof of Lemma 3.2. We distinguish several cases according to the position of z (see
Figure 1).
Case 1 when z1 ∈ Ω−

0 ∪ Γ0. Let a = d(z1, Γ0) and b = d(z1, Γ̃0) = |z1 − z̃1|, with z̃1 ∈ Γ̃0.
Consider a point z′1 ∈ [z1, z̃1] ∩ Γ0. We have

ds(z1, Γ0) − ds(z1, Γ̃0) = −a + b = −a + |z1 − z′1| + |z′1 − z̃1|.

But |z1 − z′1| ≥ d(z1, Γ0) = a and |z′1 − z̃1| ≥ de(Γ0, Γ̃0) ≥ η; therefore ds(z1, Γ0) −
ds(z1, Γ̃0) ≥ η.
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Figure 1: The different cases under consideration in the proof of Lemma 3.2.

Case 2 when z2 ∈ Ω+
0 ∩ Ω̃−

0 . Let a = d(z2, Γ0) = |z2 −z′2| with z′2 ∈ Γ0, and b = d(z2, Γ̃0) =
|z2 − z̃2|, with z̃2 ∈ Γ̃0. We have

ds(z2, Γ0) − ds(z2, Γ̃0) = a + b ≥ |z′2 − z̃2| ≥ η.

Case 3 when z3 ∈ Ω̃−
0 ∪ Γ̃0. Let a = d(z3, Γ0) = |z3 − z′3| with z′3 ∈ Γ0, and b = d(z3, Γ̃0).

Consider a point z̃3 ∈ [z3, z
′
3] ∩ Γ̃0. We have

ds(z3, Γ0) − ds(z3, Γ̃0) = a − b = |z3 − z̃3| + |z̃3 − z′3| − b.

But |z̃3−z′3| ≥ de(Γ0, Γ̃0) ≥ η and |z3− z̃3| ≥ d(z3, Γ̃0) = b; thus ds(z3, Γ0)−ds(z3, Γ̃0) ≥ η,
which completes the proof of the Lemma 3.2. 2

Now, we can state the main result of this section.

Theorem 3.1 Let (Γ0, Ω
+
0 , Ω−

0 ) be an admissible initial partition and assume that The-
orem 2.1 and (12) hold. If there exists a family (Aε)ε>0 ⊂ T and a sequence of positive
numbers (ηε)ε>0 such that

Aε −→
ε→0

Id and d(Γ0,Aε(Γ0)) ≥ ηε > 0 for ε > 0, (13)

then the front
⋃

t≥0

Γt × {t} has empty interior in R
N+1 × [0, +∞).

Proof of Theorem 3.1. Let v and vAε
be the uniformly continuous viscosity solutions

of (7) associated to the initial data ds(·, Γ0) and ds(·,Aε(Γ0)). From Lemma 3.1, for every
(z, t) ∈ R

N+1 × [0, +∞), we have

vAε
(z, t) = λεv

(

A−1
ε z,

t

λεm(λε)

)

,
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where λε is the coefficient of Aε. Next, from (13), Lemma 3.2 and the comparison principle
(H), we get that, for any ε > 0,

v(z, t) ≥ vAε
(z, t) + ηε.

Therefore

v(z, t) ≥ λεv

(

A−1
ε z,

t

λεm(λε)

)

+ ηε. (14)

Assume now that the front
⋃

t≥0 Γt ×{t} has nonempty interior in R
N+1 × [0, +∞). It

follows that there is some (z0, t0) ∈ R
N+1 × (0, +∞) and some r > 0 such that

v ≡ 0 in B(z0, r) × [t0 − r, t0 + r].

Since Aε → Id, one has λε → 1 and then, for ε sufficiently small,
(

A−1
ε z0,

t0
λεm(λε)

)

∈ B((z0, t0), r) × [t0 − r, t0 + r].

Writing (14) at the point (z0, t0), we obtain a contradiction which ends the proof. 2

4 Application to uniqueness results.

In this section we give some applications to Theorem 3.1. The first application is known
and concerns the evolution of compact sets. The second, which is the main result and the
motivation of this work, gives new uniqueness results for quasilinear parabolic pdes.

We recall some explicit assumptions on the evolution law on h which appears in (1)
or, equivalently, on F defined by (8) which imply the comparison assumption (H).

4.1 Uniqueness of generalized evolutions of compact sets

We show that Theorem 3.1 applies to recover some results of [21] and [19]. We suppose first

(H1) The evolution law h is linear with respect to the second fundamental form, i.e, h =
−Tr(G(nx)Dnx), and G : SN → S+

N+1 is continuous, where SN = {ξ ∈ R
N+1 : |ξ| = 1} is

the unit sphere and S+
N+1 is the set of nonnegative symmetric matrices of size N + 1.

Lemma 4.1 [21] Under assumption (H1), (H) holds.

Noticing that (12) holds with m(r) = r, we have

Theorem 4.1 [21] Let (Γ0, Ω
+
0 , Ω−

0 ) be an admissible partition such that Γ0 has empty

interior and evolves with velocity (1) satisfying (H1). Suppose that Ω+
0 is a compact

subset which is strictly starshaped, namely: there exists z0 ∈ Ω+
0 such that, for all z ∈ Ω+

0 ,

[z0, z[⊂ Ω+
0 . Then

⋃

t≥0

Γt × {t} has empty interior.
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This theorem was proved by Soner [21, Theorem 9.3]. Our proof is basically the same so
we only sketch it. Up to a translation, we can suppose that z0 = 0 and we check that
the family Aε(z) = (1− ε)z, for ε ∈ (0, 1) satisfies (13). We conclude by Theorem 3.1. It
is worth pointing out again that the previous result includes the mean curvature motion
(3).

We present another example of motion, namely the motion by Gaussian curvature:

(H2) The evolution law h is given by h(Dnx) = κ+
1 κ+

2 · · ·κ+
N where κ1, κ2, · · · , κN are the

principal curvatures of Γt (the eigenvalues of Dnx) and r+ := max{r, 0}.

In this case, the level set equation (7)-(8) reads

∂v

∂t
− |Dv| det+

[

1

|Dv|
(Id −

Dv ⊗ Dv

|Dv|2
)D2v(Id −

Dv ⊗ Dv

|Dv|2
) +

Dv ⊗ Dv

|Dv|2

]

= 0

in R
N+1×(0, +∞), where, for any symmetric matrix X ∈ SN+1 with eigenvalues λ1, · · ·λN+1,

det+(X) = λ+
1 · · ·λ+

N+1. Under Assumption (H2), (H) holds and therefore Theorem 2.1
applies (see [19]). Moreover (12) holds with m(r) = rN . Thus Theorem 4.1 holds true
with the same proof. By this way, we recover [19, Proposition 3.4] without assuming C2

regularity for Γ0.

4.2 Uniqueness of solutions of quasilinear parabolic pdes

We turn to our main application. Consider the following pde,






∂u

∂t
− Tr

[

b (Du)D2u
]

= 0 in R
N × (0, +∞),

u(·, 0) = u0 ∈ C(RN),
(15)

where b : R
N → S+

N and S+
N is the set of the nonnegative symmetric matrices of size

N. Note that Equation (15) is quasilinear parabolic (possibly degenerate). Existence of
solutions to (15) is not the point here, we refer to [11], [9], [3] for quite general results for
any continuous initial data u0 without any growth restriction at infinity which is unusual.
The question we address here is the uniqueness of these solutions

In [3] we show that under suitable assumptions on the diffusion matrix b (see below),
the graphs of the solutions of (15) are hypersurfaces of R

N+1 moving accordind to a
geometrical law of type (1). It makes possible to define the generalized evolution Γt of

Γ0 = Graph(u0) = {(x, u0(x)) : x ∈ R
N} ⊂ R

N+1,

and we prove that the graphs of all the continuous viscosity solutions of (15) are contained
in the front

⋃

t≥0 Γt × {t}. It follows that the uniqueness of continuous viscosity solutions
is equivalent to the non fattening of the front (see [3, Theorem 6.2]).
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In this case, the level-set equation is (7) with

F (Dv, D2v) = −Tr

[

b

(

−
Dxv

Dyv

)(

D2
xxv − 2D2

xy ⊗
Dxv

Dyv
+ Dyyv

Dxv

Dyv
⊗

Dxv

Dyv

)]

, (16)

and D(F ) = {p = (p1, p2, · · · , pN+1) ∈ R
N+1 : pN+1 = 0}. The precise assumptions we

need are

(H3) The map b : R
N → S+

N is continuous, there exists a constant C > 0 such that
|b(q)| + |b(q)q| + |〈b(q)q, q〉| ≤ C for all q ∈ R

N and there exists a continuous map
b∞ : {ξ ∈ R

N : |ξ| = 1} → S+
N such that b∞(q) = limλ→±∞ b(λq).

Lemma 4.2 [3] Under assumption (H3), (H) holds.

Roughly speaking, these assumptions allow us to control the singularities of F in order
to prove the comparison result and apply Theorem 2.1. Our main result is the following:

Theorem 4.2 Assume that F defined by (16) satisfies (H3). If u0 ∈ C(RN) is convex
at infinity, then (15) has at most one continuous viscosity solution.

Before giving the proof of the theorem, we do some comments. The typical example
we have in mind is

b(p) = Id −
p ⊗ p

1 + |p|2
.

In this case, (15) reduces to the mean curvature equation for graphs (6) and therefore the
above theorem includes as a particular case Theorem 1.1 which is the motivation of this
work. For other examples, see [3]. A similar result for motion of a graph by R-curvature
with convex at infinity initial data was obtained by Ishii and Mikami [18].

Remark 4.1 A function u0 which satisfies the assumptions of Theorem 3.1 but is not
convex at infinity. Let f, g ∈ C(RN) such that f is convex in R

N and g(x) → 0 as |x| →
+∞. Set u0 = max{f(x), g(x)}. Then u0 ∈ C(RN) is not necessarily convex at infinity
(in the case N = 1, take for instance f, g defined by f(x) = ex3

and g(x) = sin x/x). But
u0 satisfies (13). We do not give the proof since it is close to the proof of Theorem 4.2.
This example shows that Theorem 3.1 applies to a larger class of graphs than convex at
infinity ones.

Proof of Theorem 4.2. From [3, Theorem 6.2], it is sufficient to prove that the gener-
alized evolution Γt of Γ0 := Graph(u0) does not develop an interior. We proceed in two
steps.
Step 1. To emphasize the main ideas without technicality, we first suppose that u0 is
convex in R

N .
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Figure 2: Γ0 = Graph(u0) with u0 convex.

Up to translate Γ0, we can assume that there exists ρ > 0 such that B(0, ρ) ⊂ Epi(u0) =
{(x, r) ∈ R

N+1 : r ≥ u0(x)}. Consider the family (Aε)ε>0 ⊂ T , defined by

Aε = (1 + ε)Id, 0 < ε < 1,

and set Γε
0 = Aε(Γ0).

We aim at applying Theorem 3.1. We claim there exists a sequence (ηε)ε>0 of positive
numbers such that

d(Γ0,Aε(Γ0)) ≥ ηε. (17)

We prove this claim. Let z0 = (x0, y0) ∈ Γ0 and zε = Aε(z0) = (1 + ε)z0. For ξ in the
convex subdifferential ∂u0(x0) of u0 at x0, consider the support hyperplane

H0 = {z = (x, y) ∈ R
N+1 : y = 〈ξ, x− x0〉 + y0},

to Epi(u0) passing through z0 (see Figure 2). Since u0 is convex, Epi(u0) lies in the
half-space {y ≥ 〈ξ, x − x0〉 + y0}; it follows

d(zε, Γ0) ≥ d(zε, H0) = d(Hε, H0),

where Hε = {z = (x, y) : y = 〈ξ, x − (1 + ε)x0〉 + (1 + ε)y0} is the parallel hyperplane to
H0 passing through zε. Noticing that Hε = Aε(H0), we obtain

d(Hε, H0) ≥ ε d(0, H0) ≥ ρε.

11



Finally, for every zε ∈ Γε
0, d(zε, Γ0) ≥ ρε; therefore (17) holds with ηε = ρε. It follows that

assumption (13) of Theorem 3.1 holds and we obtain the desired conclusion.
Note that Step 1 provides a new proof of [3, Theorem 10.1].

Step 2. The general case.
From now on, we assume that the map u0 is convex at infinity. Let R0 > 0 be some
constant such that u0 is convex on any convex subset of R

N\B(0, R0). For x ∈ R
N , with

|x| > R0, we define the subdifferential ∂u0(x) as the subdifferential at x of the restriction
of u0 to any convex neighbourhood of x contained in R

N\B(0, R0). Since the notion of
subdifferential is local, ∂u0(x) is well defined. Let us point out that ∂u0(x) enjoys the
following property: if p ∈ ∂u0(x), then

∀y ∈ R
N with [x, y] ∩ B(0, R0) = ∅, u0(y) ≥ u0(x) + 〈p, y − x〉 .

Moreover ∂u0(x) is non empty as soon as |x| > R0.
With this in mind, let us state a preliminary (and technical) lemma (for the proof and

a comment, see below).

Lemma 4.3 Assume that u0 is convex at infinity. Then there is some radius R > 0 and
some constant c ∈ R such that

(i) u0 is convex on any convex subset of R
N\B(0, R),

(ii) for any x /∈ B(0, R + 1), for any p ∈ ∂u0(x),

u0(x) − 〈p, x〉 ≤ −|p| + c . (18)

For any ε > 0 and any λ ∈ (0, 1), let us set

uε,λ(x) = (1 − λ)

[

u0

(

x

1 − λ

)

+ ε

]

.

Let us underline that the graph of uε,λ is the image of the graph of u0 by the similitude
Aε,λ defined by

Aε,λ(z) = (1 − λ)(z + (0, ε)).

Note that Aε,λ → Id as ε, λ → 0.
To conclude applying Theorem 3.1, it is sufficient to prove the following claim:

for any ε > 0, there is some λε ∈ (0, 1) such that, for any λ ∈ (0, λε),

d (Graph(u0), Graph(uε,λ)) > 0 .

Let R and c be as in Lemma 4.3. Without loss of generality, up to some translation, we
can assume that c = −1. Thus we have

∀x /∈ B(0, R + 1), ∀p ∈ ∂u0(x), u0(x) − 〈p, x〉 ≤ −(1 + |p|) . (19)
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Since u0 is continuous, we have

∀z ∈ R
N , d((z, u0(z)), Graph(u0) + (0, ε)) > 0 .

Therefore, γε = min|z|≤R+1 d((z, u0(z)), Graph(u0) + (0, ε)) is positive.
Let x, y ∈ R

N . We want to estimate from below |(x, u0(x)) − (y, uε,λ(y))| by some
constant independant of x and y. For this, let us first assume that x ∈ B(0, R + 1). We
can also suppose that |x − y| ≤ 1. Then

|(x, u0(x))−(y, uε,λ(y))| ≥ |(x, u0(x))−(y, u0(y)+ε)|−|(u0(y)+ε)−(1−λ)(u0(
y

1 − λ
)+ε)| .

Since (y, u0(y) + ε) belongs to Graph(u0) + (0, ε), we have

|(x, u0(x)) − (y, uε,λ(y))| ≥ γε −

[

λε + λ|u0(
y

1 − λ
)| + |u0(y) − u0(

y

1 − λ
)|

]

.

We can choose λε > 0 small enough such that, for every λ ∈ (0, λε),

∀y ∈ B(0, R + 2), λε + λ|u0(
y

1 − λ
)| + |u0(y) − u0(

y

1 − λ
)| ≤ γε/2 .

This leads to
|(x, u0(x)) − (y, uε,λ(y))| ≥ γε/2 .

Let us now assume that x /∈ B(0, R + 1). Let us choose some p ∈ ∂u0(x). Since
|y − x| ≤ 1 and |x| ≥ R + 1, the segment [x, y/(1 − λ)] is a subset of R

N\B(0, R). Thus,
by convexity

u0(
y

1 − λ
) ≥ u0(x) + 〈p,

y

1 − λ
− x〉 ,

which implies that

uε,λ(y) ≥ (1 − λ)[u0(x) − 〈p, x〉 + ε] + 〈p, y〉 .

Let us define
∀z ∈ R

N , π(z) = (1 − λ)[u0(x) − 〈p, x〉 + ε] + 〈p, z〉 .

Let us notice that, on the one hand π(x) ≥ u0(x) because of (19) and, on the another
hand uε,λ(y) ≥ π(y). Therefore

|(x, u0(x)) − (y, uε,λ(y))| ≥ d((x, u0(x)), Graph(π)) = γ[1 + |p|2]−
1

2 ,

where γ = λ(〈p, x〉 − u0(x)) + (1 − λ)ε. Therefore, using (19), we get

|(x, u0(x)) − (y, uε,λ(y))| ≥ λ
1 + |p|

(1 + |p|2)
1

2

≥
λ

2
.

In conclusion, we have proved that, for any ε > 0 and any λ ∈ (0, λε),

d (Graph(u0), Graph(uε,λ)) ≥ min{γε/2, λ/2} > 0 ,

which completes the proof of Theorem 4.2. 2
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Remark 4.2 Lemma 4.3 has the following geometric interpretation: Let C be any open
convex subset of R

N\B(0, R+1). Let uC
0 be the smallest convex function which coincides

with u0 on C, namely

∀x ∈ R
N , uC

0(x) = sup{u0(z) + 〈p, x − z〉 : z ∈ C and p ∈ ∂u0(z)} .

Then inequality (18) states that uC
0 is bounded from above by the constant c on the ball

B(0, 1).

Proof of Lemma 4.3. Let R0 > 0 be some constant such that u0 is convex on any convex
subset of R

N\B(0, R0). Let us fix z ∈ R
N with |z| ≤ 1 and let us set uz(·) = u0(· + z).

Then uz is convex on any convex subset of R
N\B(0, R0 + 1).

We claim that, for any x ∈ R
N with |x| > R0 + 2, for any p ∈ ∂uz(x), for any

q ∈ ∂uz(y) where y = (R0 + 2)x/|x|, we have

uz(x) − 〈p, x〉 ≤ uz(y) − 〈q, y〉 . (20)

Indeed, since the segment [x, y] has an empty intersection with B(0, R0 +1), and since uz

is convex on any convex subset of R
N\B(0, R0 + 1), we have

uz(y) ≥ uz(x) + 〈p, y − x〉 . (21)

Moreover, from the convexity of uz on some convex neighbourhood of the segment [x, y],
we have 〈p − q, x − y〉 ≥ 0. Since x − y = (|x|/(R0 + 2) − 1)y, with |x| > R0 + 2, this
implies that 〈p, y〉 ≥ 〈q, y〉. From this inequality and from (21) we deduce that

uz(y) ≥ uz(x) − 〈p, x〉 + 〈q, y〉 ,

which proves our claim.
Since u0 is convex on any convex subset of R

N\B(0, R0), u0 is locally Lipschitz continu-
ous on this set. Let L be some Lipschitz constant of u0 on the set B(0, R0+3)\B(0, R0+1).
In particular, for any y ∈ B(0, R0 +3)\B(0, R0 + 1) and any q ∈ ∂u0(y), we have |q| ≤ L.

Let us fix z ∈ B(0, 1) and x ∈ R
N with |x| ≥ R0 +3. We apply (20) to z and to x− z:

(20) states that

∀p ∈ ∂u0(x), u0(x) − 〈p, x − z〉 ≤ u0(y + z) − 〈q, y〉

where y = (R0 + 2)(x − z)/|x − z| and q ∈ ∂u0(y + z). Let us notice that |q| ≤ L since
y + z ∈ B(0, R0 + 3)\B(0, R0 + 1). Therefore

∀p ∈ ∂u0(x), u0(x) − 〈p, x − z〉 ≤ ‖u0‖L∞(B(0,R0+3)) + L(R0 + 2) .

Since this inequality holds true for any z with |z| ≤ 1, we finally deduce that

∀p ∈ ∂u0(x), u0(x) − 〈p, x〉 ≤ c − |p| ,

with c = ‖u0‖L∞(B(0,R0+3)) + L(R0 + 2). This is the desired result if we set R = R0 + 3. 2
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