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Abstract

In this article, we prove a comparison result for viscosity solutions of a certain
class of fully nonlinear, possibly degenerate, parabolic equations; the main new
feature of this result is that it holds for any, possibly discontinuous, solutions without
imposing any restrictions on their growth at infinity. The main application of this
result which was also our main motivation to prove it, is the uniqueness of solutions
to one-dimensional equations including the mean curvature equation for graphs
without assuming any restriction on their behavior at infinity.
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1 Introduction

The main motivation of this paper comes from the following, rather surprising, result
of Ecker and Huisken [13]: for any initial data ug € W,"°(IR"), there exists a smooth
solution of the equation
du Au (D*uDu, Du)
ot 1+ |Dul?
u(z,0) = up(z) in RN .

This work was partially supported by the TMR, program “Viscosity solutions and their applications.”

=0 in RY x (0,400),




Here and below the solution u is a real-valued function, Du and D?u denote respectively
its gradient and Hessian matrix while |- | and (-, -) stand for the classical Euclidean norm
and inner product in IR".

In order to be complete, it is also worth mentioning that, following Angenent [1],
one can extend this result to merely continuous initial data using the interior gradient
estimates of Evans and Spruck [15] (see [6]).

The very non-standard feature of this kind of results is that no assumption on the
behavior of the initial data at infinity is imposed and therefore the solutions may also
have any possible behavior at infinity. A natural and intriguing question is then whether
such a solution is unique or not.

This question leads us to study of the uniqueness properties for unbounded viscosity
solutions of quasilinear, possibly degenerate, parabolic equations set in IRY and this article
is a continuation of this program started in [6] (see also [5], [4] and [7]).

In this paper, we are more particularly interested in the one-dimensional case for (1)
where this equation reduces to

ou Uz ,

gu _

o T 0 in R x(0,7), @)
u(-,0) = ug in IR.

One of the main contribution of this work is a uniqueness result for smooth solutions
of (2) (and even for more general equations), without any restriction on their growth at
infinity (see Theorem 4.2); it immediately yields a comparison result for, possibly discon-
tinuous, viscosity solutions of (2) by the geometrical approach of [6] (cf. Corollary 5.1),
i.e. a complete answer to the question we address. After this work was completed, we
learn that Chou and Kwong [9] proved general uniqueness results for a certain class of
quasilinear parabolic equations in the one-dimensional case: their hypothesis are of dif-
ferent nature from ours and their methods are quite different but their result, which is
also valid for solutions without any restriction on their behavior at infinity, includes also
the mean curvature equation.

This kind of uniqueness results is non-standard: it is well-known that uniqueness fails,
in general, if we do not impose growth conditions on the solutions at infinity, like, for
example, the heat equation. The only (general) case where similar results hold is the one
of first-order equations where they are a consequence of “finite speed of propagation” type
properties (see Crandall and Lions [12], Ishii [19] and Ley [20]) but they are very unusual
for second-order equation.

Our uniqueness proof for (2) consists in integrating the equation, which leads to con-
sider the pde

% —arctan(vg;) =0 in IR x (0, 4+00). (3)

And this is this new equation which is shown to satisfy a comparison principle for viscosity
solutions without growth condition at infinity.



We refer the reader to Crandall, Ishii and Lions [11], Fleming and Soner [17], Bardi
and Capuzzo Dolcetta [2] or Barles [3], etc. for a presentation of the notion of viscosity
solutions and for the key basic results.

In fact, the comparison result we are going to prove and apply to (3) holds in RN
(and not only in dimension 1) and for more general equations of the type

ou

N + F(z,t, Du, D*u) =0 in RN x (0,T),

(4)
u(+,0) = up in RN,

where F is a continuous function from IRY x [0, T] x RN x Sy into IR and satisfies suitable
assumptions (see (H1) and (H2) in Section 2). Our proof relies essentially on the use
of a “friendly giant method.” This result implies the uniqueness for smooth solutions of
quite general equations in the one-dimension space including (2) as we mention it above
(see Section 4).

Finally we investigate the consequences of the existence and uniqueness of solutions
for (2) from the geometrical point of view. The geometrical interpretation of (2) is that
the graph of u at every time ¢ > 0, namely

[y := Graph(u(-,t)),

is a smooth hypersurface of IR? which evolves by its mean curvature. Such evolution
has been studied recently by the so-called “level-set approach”: introduced for numerical
purposes by Osher and Sethian [21], this approach was developed by Evans and Spruck
[14] and Chen, Giga and Goto [8]; the generalized motion of hypersurfaces is described
through the evolution of the level-sets of solutions of a suitable geometrical pde. This
approach offers a lot of advantages: it is possible to deal with nonsmooth hypersurfaces,
it allows numerical computations, etc. The main issue is the agreement with the classical
motion defined in differential geometry. These questions were addressed by a lot of authors
(see especially Evans and Spruck [14], [15] and Ilmanen [18]).

Our uniqueness result allows us to show that, in the case of the mean curvature motion
of any entire continuous graph in IR?, the level-set approach agrees with the classical
motion defined in differential geometry. As a by-product, we have a comparison result
between possibly discontinuous viscosity sub and supersolutions of (2) and therefore the
uniqueness holds even in the class of discontinuous solutions. We refer to Section 5 for
the complete statement of these results.

The paper is divided as follows. In Section 2, we prove the strong comparison prin-
ciple for viscosity solutions of equation (4). Section (3) is devoted to the proof of the
existence of a solution for (4). In Section 4, we apply the previous result to uniqueness for
some one-dimensional equations including (2) as a particular case. In the last section, we
state some geometrical consequences for the mean curvature flow in IR? and more general
geometrical motions.
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2 A comparison result for viscosity solutions without
growth conditions at infinity

In order to state the comparison principle for viscosity solutions of equation (4), we use
the following assumptions in which B(xg, R) = {x € R : |z — 25| < R} denotes the ball
of radius R > 0 centered in 2, € IRY and Sy the space of N x N symmetric matrices;
moreover, for every symmetric matrix X = P(diag(\;)i<i<n)PT, where the );’s are the
eigenvalues of X and P is orthogonal, we define X = P(diag(\;)1<i<n)PT.

(H1) For any R > 0, there exists a function mp : IR, — IR, such that mg(0") = 0 and

F(y,t,n(z —y),Y) = F(a,t,n(x —y), X) <mg (nlz — y[> + [z —yl) ,
for all z,y € B(0,R), t € [0,T], X,Y € Sy, and 1 > 0 such that

I 0 X 0 I —I
(o)< (o 5 )5 T)
(H2) There exists 0 < a < 1 and constants K; > 0 and K, > 0 such that

F(xataan) —F(l',t,q,Y) < K1|p_q|(1+ |£U|)—|—K2(T‘I‘[Y—X]+)a,
for every (z,t,p, X,Y) € RN x RY x [0,T] x Sy x Sn-

Our result is the following

Theorem 2.1 Assume that (H1) and (H2) hold and let u (respectively v) be an upper-
semicontinuous viscosity subsolution (respectively lower-semicontinuous viscosity superso-
lution) of (4). If u(-,0) < v(-,0) in RN, then u < v in RN x [0, +00).

Before proving this result, let us comment the assumptions. Assumption (H1) is the
classical one to ensure uniqueness for this type of fully nonlinear parabolic equations (see
Condition (3.14) of [11]): here we just state it in a more local way. The assumption (H2)
contains all the restriction which allows such a result to hold: the first term of the right-
hand side is the classical one to obtain “finite speed of propagation” type results while the
second one concerns the behavior of F in D?u, and in particular at infinity as (3) shows
it. Obviously such an assumption or a related one is needed since such a result cannot
be true for the heat equation. A nonlinearity F' which satisfies (H2) is necessarily of the



form Fy(z,t,p) + Fy(z,t, X). We also point out that (H2) implies that F' is degenerate
elliptic. We do not know if these assumptions are close or far to be optimal.
As an example of pde which satisfies (H1)—(H2), we have

% — [(a(z, )Au)*]® + b(z, )| Du| = f(z.t) in B x (0,T),

where a, b are continuous functions on IR" x (0,7T), Lipschitz continuous in z uniformly
with respect to ¢, f € C(IRN x (0,T)) and 0 < a < 1.

Now we turn to the proof of the theorem.

Proof of Theorem 2.1. The proof is done in two steps: the first one is a kind of
linearization procedure which yields a new pde for u — v. The second one consists in the
construction of a suitable smooth supersolution of this new pde which blows up at the
boundary of balls.

The first step is described in the

Lemma 2.1 Under the assumptions of Theorem 2.1, the upper-semicontinuous function
w:=u—v s a viscosity subsolution of

Alw] = 86_0; — Ki(1+|2))|Dw| — Ko [Tr(D*w)T]* =0 in R x (0,400).  (5)

Moreover w(-,0) <0 in RN.

Then the second step relies on the

Lemma 2.2 There exists ¢ > 0 and k > > 0 such that, for R > 0 large enough, the
smooth function

(e, t) = (L4 B (U= ct) = (14 [o)F)  with o(r) = R*/r*, (6)
is a strict supersolution of (5) in the domain
1
D(e.R) = {(z.t) e RY x [0,T): et <, (1+ %) < 1+ R)2(1—ct)}. (7)

We postpone the proof of the lemmas and we first conclude the proof of the theorem.

We consider sup {w — xr} ; since xg goes to +o0o on the lateral side of D(c, R), this
D(c,R)
supremum is achieved at some point (Z,?) € D(c, R).
We cannot have ¢ > 0 because, otherwise since by Lemma 2.1 w is a viscosity subso-
lution of (5), we would have A[xg(Z,%)] < 0, which would contradict the fact that xp is

a strict supersolution of this pde by Lemma 2.2.

5



Thus, necessarily ¢ = 0 and the maximum is nonpositive since w(-,0) < 0 and
xr(+,0) > 0 in RM. Tt follows that, for every (z,t) € D(c, R),

R?
(14 R2)3(1 —ct) = (1+|af?)2)F

(u—v)(z,t) <

(8)
In order to conclude, we let R go to +oo in this inequality for t < 1/2¢ : since k > > 0,

we obtain (u —v)(x,t) < 0 for any x € IR". To prove the same property for all ¢ € [0, 7],
we iterate in time and the proof of the theorem is complete. 0O

We turn to the proof of the lemmas.

Proof of Lemma 2.1. Let ¢ € C*(IR" x (0,+00)) and suppose that (z,#) € RN x
(0, +00) is a strict local maximum point of w — ¢ = u — v — ¢ and more precisely a strict
maximum point of this function in B(z, p)? x [t — p,t + pl.

We consider, for £ > 0,

max {u(x,t) oy t) — o t) — 22 y|2} . 9)

B(2,0)2 X [t—p,i+0] g2

By classical arguments, it is easy to prove that the maximum in (9) is achieved at points
(1‘67 Ye, tg) such that

|xs - y5|2

(e, Ye, te) — (Z,7,t) and = —0 ase—0. (10)

Hence, for € small enough, (x.,y.,t.) € B(Z,p) x B(Z,p) x (t — p,t + p) and following

2 e Ye
[11], there exist a,b € IR, X,Y € Sy, such that, if we set p. := M, we have
£

(aa Dd)(l‘g, te) +p, X + D2¢(l‘aata)) € ﬁ2’+u(1'aata) )

(b,p.,Y) € P> v(x.,t.)

9,
and such that a — b = a—f(:rg,tg) and

6 (1 0 X 0 6 ([ I —I
_?<0 I>§<0 —Y>§Z2(—I 1)'

Using that u and v are respectively viscosity sub- and supersolution of (4), we have

0
6_qt5('r&‘7t&‘) +F (II,’&-,DQS(I'E,t&-) +p&‘7X+D2¢(l‘EatE)) - F(yé‘vp&‘ay) S 0
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From (H1) applied with R = |Z| 4+ p, we have

—F (yeapeay) Z —F (Sﬁg,pg,X) — Mg <2|€7ya| + |3?5 - y5|>

and from (H2), we get
F (xea D¢(x5;ts) +psaX + D2¢(xs; s)) - F (xs;psaX)
> — K| D (e, to)|(1 + |ze]) — Ko [Tr(D*¢(a, 1)) 7]".
Finally, we obtain

9¢

S (west) = K D(a, )L+ [oa]) = Ko [Te(D*(a, 1)) ]

2
ng<2M+|x£— |>.
2

Letting £ go to 0 and using (10) yields

0¢
ot

which is exactly the inequality showing that w is a subsolution of (5). O

2.1 — K\ Do, D|(1 + [2]) — K (Te{D*(2.H])" < 0

Proof of Lemma 2.2. In order to check that y is a strict supersolution for a suitable
choice of constants k > 3 > 0 and ¢ > 0 independent of R, we set r = (14 R?)'/2(1 —ct) —
(14 |z|?)'/? and note that, for (z,t) € D(c, R), we have r € [0, R] where R = /1 + R2.
Moreover, the function ¢ is decreasing convex, i.e.

¢ <0, ¢">0 on (0,R)]

The computation of the derivatives of y gives

ox oy 1 x
— 1+ R%)? Dy =—¢ ,
ot e S (1+ |z[2)z
D%y = —y 1 L b TRx ‘
(1+ |z (1+ |z[?)2 1+ |z

Substituting the derivatives in A[-] (see Lemma 2.1), we have

2
T+ [P

/ I _ TR "y rRx
o (% [” ") ((1+ P)E (1+ |x|2>%> TP

7

AlX(w, 1) = —e(L+ B2/ (r) — Ka (L + [2]) |/ (r)]

) (11)




for all (z,t) € D(c, R).
We estimate (11) from below. First

K1+ )0 < 2K ()R, (12)
(14 []?)2
for every (x,t) € D(c, R) since |¢'(r)| = —¢'(r) > 0. Noticing that the matrices
1 TR TR
X =—¢'(r — and Y =" (r
- <<1+|x|2>% (1+|x|2>%> FOTTp

are nonnegative and, using the inequality (a + 0)* < a® + b® for a,b > 0 and 0 < a < 1,
we obtain

(Tr[X +YT5)* = (TeX + TrY)" < (TrX)" + (TrY)® < N*(=¢'(r))" + N*(¢"(r))*. (13)
From (11), (12) and (13), it follows

AlX](z,t) > =@ (r)(c — 2K1)R — KoN°(— ¢'(1)" — KN (" ()"

~ R’B ) Ra,B . Raﬂ
> k(c— 2K1)Rrk+1 — K (k1) K ro(k+2)
R’B > a— —Q a— @
> v (e = 2K R — KGRI D0 GRG0 o)) (1)

S(r)

where K and K} are positive constants which depend only on N, K5, k and «.

We want to choose ¢, 3 and £ in order that the quantity S(r) in (14) is positive. We
first choose k such that the quantity S(r) is nonincreasing on [0, R] : since the exponent
(k 4+ 1)(1 — «) of the first term in r is already positive for every choice of k > 0, it is
enough to take

200 — 1
>

k = (k+1)—ak+2)>0, (15)

T 11—«

in order to ensure that the exponent of the second term in r is also positive.

We are then left to choose parameters in order to have S(R) > 0 ; to do so, a necessary
condition is clearly

c> 2K, . (16)
Using the fact that R < /1 + R? = R, we have

S(R) k(C - 2K1)R - KéR(afl),BR(lfa)(lH»l) . KéR(afl)ﬂR(k+1)fa(k+2)

> k(c—2K,)R - KéRﬂ—oz)(Hl—ﬁ) _ KéR(a—l)ﬁ+(k+1)—a(k+2)‘

8



Now it is clear that, if we can take the exponents of R in the two last terms strictly
less than 1, then we are done since for large R, the right-hand side of the inequality would
be strictly positive.

This yields the following conditions

l-—a)k+1-p) <1, (17)
(a-—1)p+(k+1)—alk+2) < 1. (18)
We recall that 0 < o < 1 ; on one hand, an easy computation shows that Condition (18)
is automatically satisfied when (17) holds. On the other hand, Condition (17) holds if we

choose 3 such that
Q

k>6>k—1 (19)

Finally, we can fix all the constants in order to fulfill (15), (16) and (19) and thus all the
required properties of x are satisfied. O

In fact, a close look at the proof of Theorem 2.1 shows that the existence of the
“friendly giants” xg allows to get some local estimate on the difference between two
solutions. It leads to the following kind of stability result which will be useful later.

Proposition 2.1 Let (F.).so a family of continuous functions satisfying assumptions
(H1) and (H2) uniformly with respect to . Assume that there exists continuous viscosity
solutions u® and v® of equation (4) with F replaced by F. such that (u®—v®)(-,0) converges
locally uniformly to 0 in IRN. Then u® —v° converges locally uniformly to 0 in IR™ x [0, T].

Proof of Proposition 2.1. Since the general case will follow by iterating in time, we only
prove the result for t < 1/2¢ recalling that ¢ is the constant appearing in the definition
of the “friendly giants” yr (see (6)).

We first observe that, for any R > 0, the function u® —supp g){(u® —v%)(:,0)} is still
a solution of (4) with F replaced by F. and that we have

u®(+,0) — sup {(u® —v°)(-,0)} <v°(-,0) in B(0,R) .
B(0,R)

Since F. satisfies (H2) independently of £, we get from inequality (8) that, for all

(z,t) € D(c, R),
Ue(x,t) - Ue(a‘qa t) < sup {(us - UE)('J 0)} + XR(xﬂt)'
B(0,R)

In order to prove that u® — v® converges locally uniformly to 0, we take an arbitrary
n > 0 and (z,t) in a compact subset K of IRY x [0,1/2¢]. For R sufficiently large, we have
Xr(7,t) <n/2in K. Then, for ¢ sufficiently small, we have sup g, R){(UE—UE)(-, 0)} <n/2.
Therefore u®(z,t) — v*(z, t) <nin K. And thus lim ' Sup sup (u® —v°) <0.

By exchanging the roles of u® and v°, we obtam the lower estimate and the proof is
complete. O



3 Existence result for equation (4)
In this section we use the comparison theorem to get the following existence result.

Theorem 3.1 Suppose that (H1) and (H2) hold. Then, for every initial datum uy €
C(IRM), there erists a unique continuous viscosity solution of (4).

Proof of Theorem 3.1. The uniqueness part is given by Theorem 2.1. For the exis-
tence, we set . (r) := min{max{r,—1/c},1/¢} for every r € IR and £ > 0 and consider
truncations of pde (4) of the form

ou

ot
where F. = ¢. o F. Noticing that ¢.(a) — ¢.(b) < max{a—b,0}, we see that the F. satisfy
assumptions (H1) and (H2), uniformly with respect to .

We first get an existence result for (20) using Perron’s method. Since |F.(x,t,p, M)| <
1/e for all (x,t,p, M), the function @.(z,t) = wug(z) + t/e (respectively w_(z,t) =
up(z) — t/e) is a supersolution (respectively a subsolution) of (20). Theorem 2.1 pro-
vides a strong comparison result for (20) and therefore Perron’s method applies readily
giving the existence of a continuous solution u. of (20) with initial datum w.

The next step consists in deriving a local L>*-bound for the family (u.).~o we built

above. To do so, we use of the “friendly giants” introduced in Section 2. Let R,c > 0
and D(c, R) defined by formula (7). We set

+ F.(x,t, Du, D*u) = 0, (20)

Cr=2 sup |u0|7 Kr =2 sup |F(77070)| > 2 sup |F£('7'7070)|7
B(O,R) D(c,R) D(c,R)

and we consider the functions (z,t) — —Cgr — Kgt — xg(z,t) and (z,t) — Cg + Kgt +
Xr(x,t) in D(c, R). Tedious but straightforward computations shows that these functions
are respectively sub- and supersolution of (20) in D(c, R) and it is clear that we have
—Cr—xr(7,0) <u.(x,0) < Cr+ xr(x,0) in B(0, R). Then, easy comparison arguments
show that

_CR_KRt_XR S Ue S CR+KRt+XR in D(C,R) .

It follows that the family (u.)cso is bounded in D(¢, R/2) independently of €. Iterating in
time, we get the local boundedness of (u.).so in IRY X [0, +00).
Finally we apply the “half-relaxed-limits” method which consists in introducing

@ =limsup*u, and wu = liminf,u,
e—0+ e—0t
which are well-defined because of the local L>°-bound on the u.’s. Moreover, they are both
discontinuous solutions of (4) with initial datum wu, since (F;) converges locally uniformly
to F. The strong comparison result for (4) (Theorem 2.1) shows that 4 = u := v and wu is
the desired continuous solution of (4) we wanted to build. O

10



4 Uniqueness for one-dimensional equations

In this section, we provide some applications of the previous result in the case of one-
dimensional quasilinear parabolic equations. We address here only uniqueness questions.
We consider the equation

g—? = (f,t,u,uz)), =0 in D'(IR x (0, +00)),

u(-,0) =ug in IR,

(21)

where ug € C(IR), the nonlinearity f € C'(IR x [0, +00) x IR x IR) and D'(IR x (0, +0c0))
is the space of distributions on IR x (0,+00). For reasons which will be clear below, we
consider only cases when the solution u is in C'(IR x (0, +00)).

To state our result, we use the following assumption on f

(H3) f is locally Lipschitz continuous in IR x (0, +00) x IR x IR and there exists constants
C > 0and 0 < a < 1 such that, for any t > 0 and z,y,u,v,p,q € IR, we have

flatu,p)=fy.t,o,q) <C [+ |pl + gDz —yl+ 1+ x|+ lyDlu—vl+ (p—9)")"] .

Note that this assumption imply (H1) and (H2) in the one-dimensional case. Equa-
tion (21) makes sense in the space of distributions since the assumed regularity for the
solution ensures that both u and f(z,t,u,u,) belong to L\ (IR x (0, +00)).

Our result is the

Theorem 4.1 Under assumptions (H3), Equation (21) has at most one solution in
C'(IR x (0,+00)) N C(IR x [0,400)) for each initial datum ug € C(IR).

Proof of Theorem 4.1. We suppose, by contradiction, that we have two solutions
u,v € CH(IR x (0,+00)) N C(IR x [0,+00)) of Equation (21). For every ¢ > 0, we define

i (z,t) = /OI u(y,t+¢) dy+/+8f(0,7',u(0,7'),ux(0,7'))dT

and v° in the same way replacing u by v in the right-hand side of this equality.
By standard arguments in the theory of distributions, one proves easily that «* and
v° are classical solutions of

fg_i — f(rt 45wy wee) =0 in IR X (0, +00) . (22)

The functions f(-,- +¢,-,-) satisfy assumptions (H1) and (H2) uniformly in ¢, and
(1 = )w0) = [ (uly.) = ()i
0

11



converges locally uniformly to 0 in IR since u(z,0) = v(z,0) = uo(z) in IR. Therefore,
by applying Proposition 2.1, we deduce that u° — v° converges to 0 locally uniformly in
IR x [0, 400).

It follows, on one hand, that the integral

/0 [£(0,7,u(0,7),u.(0,7)) — £(0,7,v(0,7),v;(0, 7))]dT

is well-defined (notice that it was not the case a priori for fotf(O,T,U(O,T),ux(O,T))dT
and fotf(O,T,U(O,T),Ux(O,T))dT) and letting ¢ go to 0, we obtain that, for all (z,t) €
IR x [0, +00),

/Ox(u )y, t)dy +/0 (0,7, u(0,7), ua(0, 7)) — F(0,7,0(0,7), v,(0,7))]dr = 0.

To prove the result, we have just to differentiate this equality with respect to x. O

Remark 4.1 : It would be very interesting to be able to prove the above result by
assuming only the solutions to be in VVI})’COO. The difficulty to do that would be in the
integration of equation (21) to get equation (22). Only few results exists in this direction
and mainly for first-order equations (cf. Corrias [10]).

A key application of the above result concerns the mean curvature equation for graphs
in IR.

Theorem 4.2 The mean curvature equation for graphs (2) has a unique smooth solution
u € C(IR % [0,400)) N C®(IR x (0,+00)) for every initial datum uy € C(IR).

Proof of Theorem 4.2. The existence part of the theorem comes from the result of
Ecker and Huisken [13] (see also [6]). The uniqueness part is an immediate consequence
of Theorem 4.1 by taking f(p) = arctan(p). In this case (21) reads exactly (2) and, since
the function arctan is a smooth nondecreasing bounded function which lies in W*°(IR),
thus in C%*(IR) for every a € (0,1), (H3) holds and therefore Theorem 4.1 applies. O

5 Application to geometrical motions in the plane

We consider, in this section, applications for the mean curvature motion of graphs in the
plane IR?. We first recall briefly some basic facts about the level-set approach in the case
of the mean curvature motion.

In this framework, the graph of the initial datum uq € C(IR) of (2) is represented
as the hypersurface Ty = {(z,y) € R? : up(x) = y} in the plane. We also define Qy =

12



{(z,y) € IR? : up(r) < y} and we take any uniformly continuous function v, : IR?* — IR
such that

Ty = {(2,9) € R? :vo(x,y) =0} and Qo= {(z,y) € R*: vo(z,y) > 0}. (23)

If X is the space of functions w : IR? x (0, +00) — IR which are uniformly continuous
in IR?* x (0,+400) for all T' > 0, by results of Evans and Spruck [14] and Chen, Giga and
Goto [8], there exists a unique viscosity solution v € X of the geometrical equation

ov 1
ot vi+v]
v(+-,0)=wvy in IR?

(V2 — 20ayUaUy + vyyv2) = 0 in IR? x (0, 400),

Moreover, if we define, for every ¢t > 0,
L= {(z,y) € B*:v(z,y,1) =0} and Q= {(z,y) € R*:v(z,y,t) >0},  (24)

then the sets (I';);>o and (€2;):>0 depend only on I'y and €y but not on the choice of their
representation through vy.

The family (I';);>o is called the generalized evolution by mean curvature of the graph
['o. A natural issue is the connection between this generalized evolution and the classical
motion by mean curvature. We recall that in general T'; is just defined as the 0-level set
of a continuous function and therefore it may be nonsmooth and even fatten.

In our context, we have

Theorem 5.1 If ug € C(IR), then, for every t > 0, the set Ty is a entire smooth graph,
namely

Iy ={(z,y) € R*:y = u(x,1)},

where u is the unique smooth solution of (2) with initial datum ug. Moreover, the evolu-
tion of T'y agrees with the classical motion by mean curvature in the sense of differential
geometry.

Proof of Theorem 5.1. From [6], we know that, if we start with an hypersurface Ty
which is an entire continuous graph in IR x IR, then, for every t > 0,

Ly ={(z,y) € R*:u™(x,t) <y < u'(x,1)},

where v~ and u™ are respectively the minimal and the maximal (possibly discontinuous)
viscosity solution of (2). In the special case of the mean curvature equation, we proved that
the boundary of the front I'; is smooth. It follows that ©~ and u™ are smooth. Uniqueness
for (2) in the class of smooth functions (see Theorem 4.2) implies that = = u* = u where
u is the unique solution to (2). Finally, I'y = Graph(u(-,t)) is a smooth submanifold of
IR? (in particular, Ty never fattens). In this case, the generalized evolution coincides with
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the classical evolution by mean curvature (see Evans and Spruck [14] and [16] for the
agreement with an alternative generalized motion). O

Using the previous geometrical approach, we can state a refinement of Theorem 4.2,
namely a comparison result which holds for any viscosity sub- and supersolutions of (2).

Corollary 5.1 Ifuy (resp. ug) is an upper-semicontinuous viscosity subsolution (respec-
tively lower-semicontinuous supersolution) of (2) and if ui(x,0) < ug(x) < us(x,0) in IR,
then uy < uy in R x [0, +00).

Proof of Corollary 5.1. This result is an immediate consequence of a more general
result in the case of the mean curvature equation: uniqueness for smooth solutions implies
comparison in the class of discontinuous viscosity solutions (see [6] for a proof). To be
self-contained, we provide a short proof which emphasizes the main ideas of the proof.

By Theorem 6.1 in [6], since u; and us are respectively an usc viscosity subsolution
and a lsc supersolution of (2), we have

Graph(u, (-, 1)) C {(z,y) € R" "' :v(z,y,t) <0},

and
Graph(uy(-,t)) C {(z,y) € R"*" : v(x,y,t) > 0} .

Essentially, this comes from the preservation of inclusion for sets moving by their mean
curvature in the level set approach (see Evans and Spruck [14]).

We recall that v is an increasing function of y but the above inclusions do not give any
information about the relative position of Graph(u(-,¢)) and Graph(us(,t)) when the
fronts 'y (ug) develop interior. But, thanks to Theorem 5.1, we know that I';(uy) is exactly
the graph of u(-, ), where u is the unique smooth solution of (2) with initial datum uy.
The front does not fatten and is the boundary of €;(ug). It follows that

uy (1) < ul-t) <ug(-,t) in RY,
which ends the proof. O

We conclude this section with an extension of the previous results to some more general
equations associated to more general geometric motions. We consider

ou )
5 (f(ug)), =0 in IR x (0,400),

u(-,0) =ug in R,

(25)

where f € C'(IR).
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Theorem 5.2 Let uy € W,"™(IR). Suppose that

feCY(R) and 0<f'(p)§1+p2

for every p € IR. (26)

Then (25) admits a unique solution u € C*(IR x (0, 4+00))NC(IR x [0, +20)). The general-
ized evolution of Ty = Graph(uyg) is Ty = Graph(u(-,t)) for t > 0. It evolves with normal
velocity equal to

V((z,y),t) = f'(—cotan())

K

27
sin?(9)’ 27)
where 0 and k denote respectively the angle between the y-axis and the normal outward
vector and the curvature to Ty at the point (z,y).

Proof of Theorem 5.2. We consider as above an uniformly continuous function vy :
IR? — IR such that {vg = 0} = [y and {vy > 0} = Qy := {y > ug(x)}. Following [6,
Section 4], if (26) holds, then

ov , Uy Ug Ug ? _ . 2
o (o) o () 4o (32) ) =0 w00
U('J 10) = Yo in R2

admits a unique solution v € X. The level set approach applies for the generalized evolu-
tion (I';);>o of 'y and evolves formally with normal velocity given by (27).

On a other hand, using Chou and Kwong [9], we learn from [6] that, again because of
(26), the boundary of T'; is made of the graphs of two smooth solutions of (25), namely
u™ and u~. Noticing that (26) implies (H3), we obtain that (25) has a unique smooth

solution; thus u* = u~ := w and T, = Graph(u(-,t)). Finally, note that, since T'; is
smooth, (27) holds in a classical sense. 0
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