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Here and below the solution u is a real-valued funtion, Du and D2u denote respetivelyits gradient and Hessian matrix while j � j and h�; �i stand for the lassial Eulidean normand inner produt in IRN .In order to be omplete, it is also worth mentioning that, following Angenent [1℄,one an extend this result to merely ontinuous initial data using the interior gradientestimates of Evans and Spruk [15℄ (see [6℄).The very non-standard feature of this kind of results is that no assumption on thebehavior of the initial data at in�nity is imposed and therefore the solutions may alsohave any possible behavior at in�nity. A natural and intriguing question is then whethersuh a solution is unique or not.This question leads us to study of the uniqueness properties for unbounded visositysolutions of quasilinear, possibly degenerate, paraboli equations set in IRN and this artileis a ontinuation of this program started in [6℄ (see also [5℄, [4℄ and [7℄).In this paper, we are more partiularly interested in the one-dimensional ase for (1)where this equation redues to8<:�u�t � uxx1 + u2x = 0 in IR� (0; T );u(�; 0) = u0 in IR: (2)One of the main ontribution of this work is a uniqueness result for smooth solutionsof (2) (and even for more general equations), without any restrition on their growth atin�nity (see Theorem 4.2); it immediately yields a omparison result for, possibly dison-tinuous, visosity solutions of (2) by the geometrial approah of [6℄ (f. Corollary 5.1),i.e. a omplete answer to the question we address. After this work was ompleted, welearn that Chou and Kwong [9℄ proved general uniqueness results for a ertain lass ofquasilinear paraboli equations in the one-dimensional ase: their hypothesis are of dif-ferent nature from ours and their methods are quite di�erent but their result, whih isalso valid for solutions without any restrition on their behavior at in�nity, inludes alsothe mean urvature equation.This kind of uniqueness results is non-standard: it is well-known that uniqueness fails,in general, if we do not impose growth onditions on the solutions at in�nity, like, forexample, the heat equation. The only (general) ase where similar results hold is the oneof �rst-order equations where they are a onsequene of \�nite speed of propagation" typeproperties (see Crandall and Lions [12℄, Ishii [19℄ and Ley [20℄) but they are very unusualfor seond-order equation.Our uniqueness proof for (2) onsists in integrating the equation, whih leads to on-sider the pde �v�t � artan(vxx) = 0 in IR� (0;+1): (3)And this is this new equation whih is shown to satisfy a omparison priniple for visositysolutions without growth ondition at in�nity.2



We refer the reader to Crandall, Ishii and Lions [11℄, Fleming and Soner [17℄, Bardiand Capuzzo Doletta [2℄ or Barles [3℄, et. for a presentation of the notion of visositysolutions and for the key basi results.In fat, the omparison result we are going to prove and apply to (3) holds in IRN(and not only in dimension 1) and for more general equations of the type8<:�u�t + F (x; t;Du;D2u) = 0 in IRN � (0; T );u(�; 0) = u0 in IRN ; (4)where F is a ontinuous funtion from IRN� [0; T ℄�IRN�SN into IR and satis�es suitableassumptions (see (H1) and (H2) in Setion 2). Our proof relies essentially on the useof a \friendly giant method." This result implies the uniqueness for smooth solutions ofquite general equations in the one-dimension spae inluding (2) as we mention it above(see Setion 4).Finally we investigate the onsequenes of the existene and uniqueness of solutionsfor (2) from the geometrial point of view. The geometrial interpretation of (2) is thatthe graph of u at every time t � 0, namely�t := Graph(u(�; t));is a smooth hypersurfae of IR2 whih evolves by its mean urvature. Suh evolutionhas been studied reently by the so-alled \level-set approah": introdued for numerialpurposes by Osher and Sethian [21℄, this approah was developed by Evans and Spruk[14℄ and Chen, Giga and Goto [8℄; the generalized motion of hypersurfaes is desribedthrough the evolution of the level-sets of solutions of a suitable geometrial pde. Thisapproah o�ers a lot of advantages: it is possible to deal with nonsmooth hypersurfaes,it allows numerial omputations, et. The main issue is the agreement with the lassialmotion de�ned in di�erential geometry. These questions were addressed by a lot of authors(see espeially Evans and Spruk [14℄, [15℄ and Ilmanen [18℄).Our uniqueness result allows us to show that, in the ase of the mean urvature motionof any entire ontinuous graph in IR2, the level-set approah agrees with the lassialmotion de�ned in di�erential geometry. As a by-produt, we have a omparison resultbetween possibly disontinuous visosity sub and supersolutions of (2) and therefore theuniqueness holds even in the lass of disontinuous solutions. We refer to Setion 5 forthe omplete statement of these results.The paper is divided as follows. In Setion 2, we prove the strong omparison prin-iple for visosity solutions of equation (4). Setion (3) is devoted to the proof of theexistene of a solution for (4). In Setion 4, we apply the previous result to uniqueness forsome one-dimensional equations inluding (2) as a partiular ase. In the last setion, westate some geometrial onsequenes for the mean urvature ow in IR2 and more generalgeometrial motions. 3



Aknowledgment. This work was partially done while the last author had a post-dotoral position at the University of Padova. He would like to thank the departmentof mathematis and espeially Martino Bardi for their kind hospitality and fruitful ex-hanges.2 A omparison result for visosity solutions withoutgrowth onditions at in�nityIn order to state the omparison priniple for visosity solutions of equation (4), we usethe following assumptions in whih �B(x0; R) = fx 2 IRN : jx� x0j � Rg denotes the ballof radius R > 0 entered in x0 2 IRN and SN the spae of N � N symmetri matries;moreover, for every symmetri matrix X = P (diag(�i)1�i�N)P T ; where the �i's are theeigenvalues of X and P is orthogonal, we de�ne X+ = P (diag(�+i )1�i�N)P T :(H1) For any R > 0; there exists a funtion mR : IR+ ! IR+ suh that mR(0+) = 0 andF (y; t; �(x� y); Y )� F (x; t; �(x� y); X) � mR ��jx� yj2 + jx� yj� ;for all x; y 2 �B(0; R); t 2 [0; T ℄; X; Y 2 SN ; and � > 0 suh that�3�� I 00 I � � � X 00 �Y � � 3�� I �I�I I � :(H2) There exists 0 < � < 1 and onstants K1 > 0 and K2 > 0 suh thatF (x; t; p;X)� F (x; t; q; Y ) � K1jp� qj(1 + jxj) +K2(Tr[Y �X℄+)�;for every (x; t; p;X; Y ) 2 IRN � IRN � [0; T ℄� SN � SN :Our result is the followingTheorem 2.1 Assume that (H1) and (H2) hold and let u (respetively v) be an upper-semiontinuous visosity subsolution (respetively lower-semiontinuous visosity superso-lution) of (4). If u(�; 0) � v(�; 0) in IRN ; then u � v in IRN � [0;+1):Before proving this result, let us omment the assumptions. Assumption (H1) is thelassial one to ensure uniqueness for this type of fully nonlinear paraboli equations (seeCondition (3.14) of [11℄): here we just state it in a more loal way. The assumption (H2)ontains all the restrition whih allows suh a result to hold: the �rst term of the right-hand side is the lassial one to obtain \�nite speed of propagation" type results while theseond one onerns the behavior of F in D2u, and in partiular at in�nity as (3) showsit. Obviously suh an assumption or a related one is needed sine suh a result annotbe true for the heat equation. A nonlinearity F whih satis�es (H2) is neessarily of the4



form F1(x; t; p) + F2(x; t;X). We also point out that (H2) implies that F is degenerateellipti. We do not know if these assumptions are lose or far to be optimal.As an example of pde whih satis�es (H1){(H2), we have�u�t � �(a(x; t)�u)+�� + b(x; t)jDuj = f(x; t) in IRN � (0; T );where a; b are ontinuous funtions on IRN � (0; T ), Lipshitz ontinuous in x uniformlywith respet to t, f 2 C(IRN � (0; T )) and 0 < � < 1.Now we turn to the proof of the theorem.Proof of Theorem 2.1. The proof is done in two steps: the �rst one is a kind oflinearization proedure whih yields a new pde for u� v: The seond one onsists in theonstrution of a suitable smooth supersolution of this new pde whih blows up at theboundary of balls.The �rst step is desribed in theLemma 2.1 Under the assumptions of Theorem 2.1, the upper-semiontinuous funtion! := u� v is a visosity subsolution ofA[!℄ = �!�t �K1(1 + jxj)jD!j �K2�Tr(D2!)+�� = 0 in IRN � (0;+1): (5)Moreover !(�; 0) � 0 in IRN .Then the seond step relies on theLemma 2.2 There exists  > 0 and k > � > 0 suh that, for R > 0 large enough, thesmooth funtion�R(x; t) = '�(1 +R2) 12 (1� t)� (1 + jxj2) 12� with '(r) = R�=rk; (6)is a strit supersolution of (5) in the domainD(; R) = f(x; t) 2 IRN � [0; T ℄ : t < 12 ; (1 + jxj2) 12 < (1 +R2) 12 (1� t)g : (7)We postpone the proof of the lemmas and we �rst onlude the proof of the theorem.We onsider supD(;R)f! � �Rg ; sine �R goes to +1 on the lateral side of D(; R), thissupremum is ahieved at some point (�x; �t) 2 D(; R).We annot have �t > 0 beause, otherwise sine by Lemma 2.1 ! is a visosity subso-lution of (5), we would have A[�R(�x; �t)℄ � 0, whih would ontradit the fat that �R isa strit supersolution of this pde by Lemma 2.2.5



Thus, neessarily �t = 0 and the maximum is nonpositive sine !(�; 0) � 0 and�R(�; 0) > 0 in IRN . It follows that, for every (x; t) 2 D(; R);(u� v)(x; t) � R�[(1 + R2) 12 (1� t)� (1 + jxj2) 12 ℄k : (8)In order to onlude, we let R go to +1 in this inequality for t < 1=2 : sine k > � > 0,we obtain (u� v)(x; t) � 0 for any x 2 IRN . To prove the same property for all t 2 [0; T ℄,we iterate in time and the proof of the theorem is omplete. 2We turn to the proof of the lemmas.Proof of Lemma 2.1. Let � 2 C2(IRN � (0;+1)) and suppose that (�x; �t) 2 IRN �(0;+1) is a strit loal maximum point of !� � = u� v� � and more preisely a stritmaximum point of this funtion in �B(�x; �)2 � [�t� �; �t + �℄.We onsider, for " > 0,max�B(�x;�)2�[�t��;�t+�℄�u(x; t)� v(y; t)� �(x; t)� jx� yj2"2 � : (9)By lassial arguments, it is easy to prove that the maximum in (9) is ahieved at points(x"; y"; t") suh that(x"; y"; t")! (�x; �x; �t) and jx" � y"j2"2 ! 0 as "! 0: (10)Hene, for " small enough, (x"; y"; t") 2 B(�x; �) � B(�x; �) � (�t � �; �t + �) and following[11℄, there exist a; b 2 IR; X; Y 2 SN ; suh that, if we set p" := 2(x" � y")"2 , we have(a;D�(x"; t") + p"; X +D2�(x"; t")) 2 �P2;+u(x"; t") ;(b; p"; Y ) 2 �P2;�v(x"; t")and suh that a� b = ���t (x"; t") and� 6"2 � I 00 I � � � X 00 �Y � � 6"2 � I �I�I I � :Using that u and v are respetively visosity sub- and supersolution of (4), we have���t (x"; t") + F �x"; D�(x"; t") + p"; X +D2�(x"; t")�� F (y"; p"; Y ) � 0:6



From (H1) applied with R = j�xj+ �, we have�F (y"; p"; Y ) � �F (x"; p"; X)�mR �2 jx" � y"j2"2 + jx" � y"j�and from (H2), we getF �x"; D�(x"; t") + p"; X +D2�(x"; t")�� F (x"; p"; X)� �K1jD�(x"; t")j(1 + jx"j)�K2 �Tr(D2�(x"; t"))+�� :Finally, we obtain���t (x"; t")�K1jD�(x"; t")j(1 + jx"j)�K2 �Tr(D2�(x"; t"))+��� mR �2 jx" � y"j2"2 + jx" � y"j� :Letting " go to 0 and using (10) yields���t (�x; �t)�K1jD�(�x; �t)j(1 + j�xj)�K2 �Tr[D2�(�x; �t)℄+�� � 0whih is exatly the inequality showing that ! is a subsolution of (5). 2Proof of Lemma 2.2. In order to hek that � is a strit supersolution for a suitablehoie of onstants k > � > 0 and  > 0 independent of R, we set r = (1+R2)1=2(1�t)�(1 + jxj2)1=2 and note that, for (x; t) 2 D(; R); we have r 2 [0; �R℄ where �R = p1 +R2:Moreover, the funtion ' is dereasing onvex, i.e.'0 < 0; '00 � 0 on (0; �R℄:The omputation of the derivatives of � gives���t = �(1 +R2) 12'0; D� = �'0 x(1 + jxj2) 12 ;D2� = �'0  I(1 + jxj2) 12 � x
 x(1 + jxj2) 32 !+ '00 x
 x1 + jxj2 :Substituting the derivatives in A[�℄ (see Lemma 2.1), we haveA[�℄(x; t) = �(1 +R2)1=2'0(r)�K1(1 + jxj)j'0(r)j jxj(1 + jxj2)1=2�K2 Tr"�'0(r) I(1 + jxj2) 12 � x
 x(1 + jxj2) 32 !+ '00(r) x
 x1 + jxj2#+!� (11)7



for all (x; t) 2 D(; R):We estimate (11) from below. First�K1(1 + jxj)j'0(r)j jxj(1 + jxj2) 12 � 2K1'0(r) �R; (12)for every (x; t) 2 D(; R) sine j'0(r)j = �'0(r) � 0: Notiing that the matriesX = �'0(r) I(1 + jxj2) 12 � x
 x(1 + jxj2) 32 ! and Y = '00(r) x
 x1 + jxj2are nonnegative and, using the inequality (a + b)� � a� + b� for a; b � 0 and 0 < � < 1;we obtain(Tr[X + Y ℄+)� = (TrX + TrY )� � (TrX)� + (TrY )� � N�(�'0(r))� +N�('00(r))�: (13)From (11), (12) and (13), it followsA[�℄(x; t) � �'0(r)(� 2K1) �R�K2N��� '0(r)�� �K2N��'00(r)��� k(� 2K1) �R R�rk+1 �K 02 R��r�(k+1) �K 03 R��r�(k+2)� R�rk+1�k(� 2K1) �R�K 02R(��1)�r(k+1)(1��) �K 03R(��1)�r(k+1)��(k+2)| {z }S(r) � (14)where K 02 and K 03 are positive onstants whih depend only on N;K2; k and �:We want to hoose ; � and k in order that the quantity S(r) in (14) is positive. We�rst hoose k suh that the quantity S(r) is noninreasing on [0; �R℄ : sine the exponent(k + 1)(1 � �) of the �rst term in r is already positive for every hoie of k > 0, it isenough to take k � 2�� 11� � =) (k + 1)� �(k + 2) � 0 ; (15)in order to ensure that the exponent of the seond term in r is also positive.We are then left to hoose parameters in order to have S( �R) > 0 ; to do so, a neessaryondition is learly  > 2K1 : (16)Using the fat that R � p1 +R2 = �R, we haveS( �R) = k(� 2K1) �R�K 02R(��1)� �R(1��)(k+1) �K 03R(��1)� �R(k+1)��(k+2)� k(� 2K1) �R�K 02 �R(1��)(k+1��) �K 03 �R(��1)�+(k+1)��(k+2):8



Now it is lear that, if we an take the exponents of �R in the two last terms stritlyless than 1, then we are done sine for large R, the right-hand side of the inequality wouldbe stritly positive.This yields the following onditions(1� �)(k + 1� �) < 1; (17)(�� 1)� + (k + 1)� �(k + 2) < 1: (18)We reall that 0 < � < 1 ; on one hand, an easy omputation shows that Condition (18)is automatially satis�ed when (17) holds. On the other hand, Condition (17) holds if wehoose � suh that k > � > k � �1� �: (19)Finally, we an �x all the onstants in order to ful�ll (15), (16) and (19) and thus all therequired properties of � are satis�ed. 2In fat, a lose look at the proof of Theorem 2.1 shows that the existene of the\friendly giants" �R allows to get some loal estimate on the di�erene between twosolutions. It leads to the following kind of stability result whih will be useful later.Proposition 2.1 Let (F")">0 a family of ontinuous funtions satisfying assumptions(H1) and (H2) uniformly with respet to ". Assume that there exists ontinuous visositysolutions u" and v" of equation (4) with F replaed by F" suh that (u"�v")(�; 0) onvergesloally uniformly to 0 in IRN . Then u"�v" onverges loally uniformly to 0 in IRN� [0; T ℄.Proof of Proposition 2.1. Sine the general ase will follow by iterating in time, we onlyprove the result for t � 1=2 realling that  is the onstant appearing in the de�nitionof the \friendly giants" �R (see (6)).We �rst observe that, for any R > 0, the funtion u"� supB(0;R)f(u"� v")(�; 0)g is stilla solution of (4) with F replaed by F" and that we haveu"(�; 0)� supB(0;R)f(u" � v")(�; 0)g � v"(�; 0) in B(0; R) :Sine F" satis�es (H2) independently of "; we get from inequality (8) that, for all(x; t) 2 D(; R); u"(x; t)� v"(x; t) � supB(0;R)f(u" � v")(�; 0)g+ �R(x; t):In order to prove that u" � v" onverges loally uniformly to 0, we take an arbitrary� > 0 and (x; t) in a ompat subset K of IRN� [0; 1=2℄. For R suÆiently large, we have�R(x; t) � �=2 inK. Then, for " suÆiently small, we have supB(0;R)f(u"�v")(�; 0)g � �=2:Therefore u"(x; t)� v"(x; t) � � in K. And thus lim sup"!0 supK (u" � v") � 0.By exhanging the roles of u" and v", we obtain the lower estimate and the proof isomplete. 29



3 Existene result for equation (4)In this setion we use the omparison theorem to get the following existene result.Theorem 3.1 Suppose that (H1) and (H2) hold. Then, for every initial datum u0 2C(IRN); there exists a unique ontinuous visosity solution of (4).Proof of Theorem 3.1. The uniqueness part is given by Theorem 2.1. For the exis-tene, we set '"(r) := minfmaxfr;�1="g; 1="g for every r 2 IR and " > 0 and onsidertrunations of pde (4) of the form�u�t + F"(x; t;Du;D2u) = 0; (20)where F" = '" ÆF: Notiing that '"(a)�'"(b) � maxfa� b; 0g; we see that the F" satisfyassumptions (H1) and (H2), uniformly with respet to ":We �rst get an existene result for (20) using Perron's method. Sine jF"(x; t; p;M)j �1=" for all (x; t; p;M); the funtion �u"(x; t) := u0(x) + t=" (respetively u"(x; t) :=u0(x) � t=") is a supersolution (respetively a subsolution) of (20). Theorem 2.1 pro-vides a strong omparison result for (20) and therefore Perron's method applies readilygiving the existene of a ontinuous solution u" of (20) with initial datum u0.The next step onsists in deriving a loal L1-bound for the family (u")">0 we builtabove. To do so, we use of the \friendly giants" introdued in Setion 2. Let R;  > 0and D(; R) de�ned by formula (7). We setCR = 2 supB(0;R) ju0j; KR = 2 supD(;R) jF (�; �; 0; 0)j � 2 supD(;R) jF"(�; �; 0; 0)j;and we onsider the funtions (x; t) 7! �CR � KRt � �R(x; t) and (x; t) 7! CR +KRt +�R(x; t) in D(; R). Tedious but straightforward omputations shows that these funtionsare respetively sub- and supersolution of (20) in D(; R) and it is lear that we have�CR��R(x; 0) � u"(x; 0) � CR+�R(x; 0) in B(0; R). Then, easy omparison argumentsshow that �CR �KRt� �R � u" � CR +KRt+ �R in D(; R) :It follows that the family (u")">0 is bounded in D(; R=2) independently of ": Iterating intime, we get the loal boundedness of (u")">0 in IRN � [0;+1):Finally we apply the \half-relaxed-limits" method whih onsists in introduing�u = lim sup"!0+ �u" and u = lim inf"!0+ �u"whih are well-de�ned beause of the loal L1-bound on the u"'s. Moreover, they are bothdisontinuous solutions of (4) with initial datum u0 sine (F") onverges loally uniformlyto F: The strong omparison result for (4) (Theorem 2.1) shows that �u = u := u and u isthe desired ontinuous solution of (4) we wanted to build. 210



4 Uniqueness for one-dimensional equationsIn this setion, we provide some appliations of the previous result in the ase of one-dimensional quasilinear paraboli equations. We address here only uniqueness questions.We onsider the equation8<: �u�t � (f(x; t; u; ux))x = 0 in D0(IR� (0;+1));u(�; 0) = u0 in IR; (21)where u0 2 C(IR); the nonlinearity f 2 C(IR� [0;+1)� IR� IR) and D0(IR� (0;+1))is the spae of distributions on IR � (0;+1): For reasons whih will be lear below, weonsider only ases when the solution u is in C1(IR� (0;+1)).To state our result, we use the following assumption on f(H3) f is loally Lipshitz ontinuous in IR�(0;+1)�IR�IR and there exists onstantsC > 0 and 0 < � < 1 suh that, for any t > 0 and x; y; u; v; p; q 2 IR, we havef(x; t; u; p)�f(y; t; v; q) � C �(1 + jpj+ jqj)jx� yj+ (1 + jxj+ jyj)ju� vj+ �(p� q)+��� :Note that this assumption imply (H1) and (H2) in the one-dimensional ase. Equa-tion (21) makes sense in the spae of distributions sine the assumed regularity for thesolution ensures that both u and f(x; t; u; ux) belong to L1lo(IR� (0;+1)):Our result is theTheorem 4.1 Under assumptions (H3), Equation (21) has at most one solution inC1(IR� (0;+1)) \ C(IR� [0;+1)) for eah initial datum u0 2 C(IR):Proof of Theorem 4.1. We suppose, by ontradition, that we have two solutionsu; v 2 C1(IR� (0;+1)) \ C(IR� [0;+1)) of Equation (21). For every " > 0; we de�ne~u"(x; t) = Z x0 u(y; t+ ") dy + Z t+"" f(0; �; u(0; �); ux(0; �)) d�and ~v" in the same way replaing u by v in the right-hand side of this equality.By standard arguments in the theory of distributions, one proves easily that ~u" and~v" are lassial solutions of�!�t � f(x; t+ "; !x; !xx) = 0 in IR� (0;+1) : (22)The funtions f(�; �+ "; �; �) satisfy assumptions (H1) and (H2) uniformly in "; and(~u" � ~v")(x; 0) = Z x0 (u(y; ")� v(y; "))dy11



onverges loally uniformly to 0 in IR sine u(x; 0) = v(x; 0) = u0(x) in IR. Therefore,by applying Proposition 2.1, we dedue that ~u" � ~v" onverges to 0 loally uniformly inIR� [0;+1).It follows, on one hand, that the integralZ t0 [f(0; �; u(0; �); ux(0; �))� f(0; �; v(0; �); vx(0; �))℄d�is well-de�ned (notie that it was not the ase a priori for R t0 f(0; �; u(0; �); ux(0; �))d�and R t0 f(0; �; v(0; �); vx(0; �))d�) and letting " go to 0, we obtain that, for all (x; t) 2IR� [0;+1);Z x0 (u� v)(y; t)dy + Z t0 [f(0; �; u(0; �); ux(0; �))� f(0; �; v(0; �); vx(0; �))℄d� = 0:To prove the result, we have just to di�erentiate this equality with respet to x: 2Remark 4.1 : It would be very interesting to be able to prove the above result byassuming only the solutions to be in W 1;1lo . The diÆulty to do that would be in theintegration of equation (21) to get equation (22). Only few results exists in this diretionand mainly for �rst-order equations (f. Corrias [10℄).A key appliation of the above result onerns the mean urvature equation for graphsin IR:Theorem 4.2 The mean urvature equation for graphs (2) has a unique smooth solutionu 2 C(IR� [0;+1)) \ C1(IR� (0;+1)) for every initial datum u0 2 C(IR):Proof of Theorem 4.2. The existene part of the theorem omes from the result ofEker and Huisken [13℄ (see also [6℄). The uniqueness part is an immediate onsequeneof Theorem 4.1 by taking f(p) = artan(p): In this ase (21) reads exatly (2) and, sinethe funtion artan is a smooth nondereasing bounded funtion whih lies in W 1;1(IR);thus in C0;�(IR) for every � 2 (0; 1); (H3) holds and therefore Theorem 4.1 applies. 25 Appliation to geometrial motions in the planeWe onsider, in this setion, appliations for the mean urvature motion of graphs in theplane IR2. We �rst reall briey some basi fats about the level-set approah in the aseof the mean urvature motion.In this framework, the graph of the initial datum u0 2 C(IR) of (2) is representedas the hypersurfae �0 = f(x; y) 2 IR2 : u0(x) = yg in the plane. We also de�ne 
0 =12



f(x; y) 2 IR2 : u0(x) < yg and we take any uniformly ontinuous funtion v0 : IR2 ! IRsuh that�0 = f(x; y) 2 IR2 : v0(x; y) = 0g and 
0 = f(x; y) 2 IR2 : v0(x; y) > 0g: (23)If X is the spae of funtions w : IR2 � (0;+1)! IR whih are uniformly ontinuousin IR2 � (0;+1) for all T > 0; by results of Evans and Spruk [14℄ and Chen, Giga andGoto [8℄, there exists a unique visosity solution v 2 X of the geometrial equation8<: �v�t � 1v2x + v2y (vxxv2y � 2vxyvxvy + vyyv2x) = 0 in IR2 � (0;+1);v(�; �; 0) = v0 in IR2:Moreover, if we de�ne, for every t � 0;�t = f(x; y) 2 IR2 : v(x; y; t) = 0g and 
t = f(x; y) 2 IR2 : v(x; y; t) > 0g; (24)then the sets (�t)t�0 and (
t)t�0 depend only on �0 and 
0 but not on the hoie of theirrepresentation through v0.The family (�t)t�0 is alled the generalized evolution by mean urvature of the graph�0. A natural issue is the onnetion between this generalized evolution and the lassialmotion by mean urvature. We reall that in general �t is just de�ned as the 0-level setof a ontinuous funtion and therefore it may be nonsmooth and even fatten.In our ontext, we haveTheorem 5.1 If u0 2 C(IR); then, for every t � 0; the set �t is a entire smooth graph,namely �t = f(x; y) 2 IR2 : y = u(x; t)g;where u is the unique smooth solution of (2) with initial datum u0: Moreover, the evolu-tion of �t agrees with the lassial motion by mean urvature in the sense of di�erentialgeometry.Proof of Theorem 5.1. From [6℄, we know that, if we start with an hypersurfae �0whih is an entire ontinuous graph in IR� IR; then, for every t � 0;�t = f(x; y) 2 IR2 : u�(x; t) � y � u+(x; t)g;where u� and u+ are respetively the minimal and the maximal (possibly disontinuous)visosity solution of (2). In the speial ase of the mean urvature equation, we proved thatthe boundary of the front �t is smooth. It follows that u� and u+ are smooth. Uniquenessfor (2) in the lass of smooth funtions (see Theorem 4.2) implies that u� = u+ = u whereu is the unique solution to (2). Finally, �t = Graph(u(�; t)) is a smooth submanifold ofIR2 (in partiular, �t never fattens). In this ase, the generalized evolution oinides with13



the lassial evolution by mean urvature (see Evans and Spruk [14℄ and [16℄ for theagreement with an alternative generalized motion). 2Using the previous geometrial approah, we an state a re�nement of Theorem 4.2,namely a omparison result whih holds for any visosity sub- and supersolutions of (2).Corollary 5.1 If u1 (resp. u2) is an upper-semiontinuous visosity subsolution (respe-tively lower-semiontinuous supersolution) of (2) and if u1(x; 0) � u0(x) � u2(x; 0) in IR,then u1 � u2 in IR� [0;+1):Proof of Corollary 5.1. This result is an immediate onsequene of a more generalresult in the ase of the mean urvature equation: uniqueness for smooth solutions impliesomparison in the lass of disontinuous visosity solutions (see [6℄ for a proof). To beself-ontained, we provide a short proof whih emphasizes the main ideas of the proof.By Theorem 6.1 in [6℄, sine u1 and u2 are respetively an us visosity subsolutionand a ls supersolution of (2), we haveGraph(u1(�; t)) � f(x; y) 2 IRN+1 : v(x; y; t) � 0g ;and Graph(u2(�; t)) � f(x; y) 2 IRN+1 : v(x; y; t) � 0g :Essentially, this omes from the preservation of inlusion for sets moving by their meanurvature in the level set approah (see Evans and Spruk [14℄).We reall that v is an inreasing funtion of y but the above inlusions do not give anyinformation about the relative position of Graph(u1(�; t)) and Graph(u2(�; t)) when thefronts �t(u0) develop interior. But, thanks to Theorem 5.1, we know that �t(u0) is exatlythe graph of u(�; t), where u is the unique smooth solution of (2) with initial datum u0.The front does not fatten and is the boundary of 
t(u0). It follows thatu1(�; t) � u(�; t) � u2(�; t) in IRN ;whih ends the proof. 2We onlude this setion with an extension of the previous results to some more generalequations assoiated to more general geometri motions. We onsider8<: �u�t � (f(ux))x = 0 in IR� (0;+1);u(�; 0) = u0 in IR; (25)where f 2 C1(IR): 14



Theorem 5.2 Let u0 2 W 1;1lo (IR): Suppose thatf 2 C1(IR) and 0 < f 0(p) � C1 + p2 for every p 2 IR: (26)Then (25) admits a unique solution u 2 C2(IR�(0;+1))\C(IR� [0;+1)): The general-ized evolution of �0 = Graph(u0) is �t = Graph(u(�; t)) for t � 0: It evolves with normalveloity equal to V((x; y); t) = f 0(�otan(�)) �sin2(�) ; (27)where � and � denote respetively the angle between the y-axis and the normal outwardvetor and the urvature to �t at the point (x; y):Proof of Theorem 5.2. We onsider as above an uniformly ontinuous funtion v0 :IR2 ! IR suh that fv0 = 0g = �0 and fv0 > 0g = 
0 := fy > u0(x)g: Following [6,Setion 4℄, if (26) holds, then8<: �v�t � f 0��vxvy� (vxx � 2vxy �vxvy�+ vyy �vxvy�2) = 0 in IR2 � (0;+1);v(�; �; 0) = v0 in IR2 (28)admits a unique solution v 2 X : The level set approah applies for the generalized evolu-tion (�t)t�0 of �0 and evolves formally with normal veloity given by (27).On a other hand, using Chou and Kwong [9℄, we learn from [6℄ that, again beause of(26), the boundary of �t is made of the graphs of two smooth solutions of (25), namelyu+ and u�: Notiing that (26) implies (H3), we obtain that (25) has a unique smoothsolution; thus u+ = u� := u and �t = Graph(u(�; t)): Finally, note that, sine �t issmooth, (27) holds in a lassial sense. 2Referenes[1℄ S. B. Angenent, Some reent results on mean urvature ow, RAM Res. Appl. Math.30 (1994), 1{18.[2℄ M. Bardi and I. Capuzzo Doletta, \Optimal ontrol and visosity solutions ofHamilton-Jaobi-Bellman equations," Birkh�auser Boston In., Boston, MA, 1997.[3℄ G. Barles, \Solutions de visosit�e des �equations de Hamilton-Jaobi," Springer-Verlag, Paris, 1994.[4℄ G. Barles, S. Biton, M. Bourgoing, and O. Ley, Uniqueness results for quasilinearparaboli equations through visosity solutions' methods, to appear in Cal. Var.15
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