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tIn this arti
le, we prove a 
omparison result for vis
osity solutions of a 
ertain
lass of fully nonlinear, possibly degenerate, paraboli
 equations; the main newfeature of this result is that it holds for any, possibly dis
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tions on their growth at in�nity. The main appli
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h was also our main motivation to prove it, is the uniqueness of solutionsto one-dimensional equations in
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urvature equation for graphswithout assuming any restri
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tionThe main motivation of this paper 
omes from the following, rather surprising, resultof E
ker and Huisken [13℄: for any initial data u0 2 W 1;1lo
 (IRN), there exists a smoothsolution of the equation8<: �u�t ��u+ hD2uDu;Dui1 + jDuj2 = 0 in IRN � (0;+1);u(x; 0) = u0(x) in IRN : (1)This work was partially supported by the TMR program \Vis
osity solutions and their appli
ations."1



Here and below the solution u is a real-valued fun
tion, Du and D2u denote respe
tivelyits gradient and Hessian matrix while j � j and h�; �i stand for the 
lassi
al Eu
lidean normand inner produ
t in IRN .In order to be 
omplete, it is also worth mentioning that, following Angenent [1℄,one 
an extend this result to merely 
ontinuous initial data using the interior gradientestimates of Evans and Spru
k [15℄ (see [6℄).The very non-standard feature of this kind of results is that no assumption on thebehavior of the initial data at in�nity is imposed and therefore the solutions may alsohave any possible behavior at in�nity. A natural and intriguing question is then whethersu
h a solution is unique or not.This question leads us to study of the uniqueness properties for unbounded vis
ositysolutions of quasilinear, possibly degenerate, paraboli
 equations set in IRN and this arti
leis a 
ontinuation of this program started in [6℄ (see also [5℄, [4℄ and [7℄).In this paper, we are more parti
ularly interested in the one-dimensional 
ase for (1)where this equation redu
es to8<:�u�t � uxx1 + u2x = 0 in IR� (0; T );u(�; 0) = u0 in IR: (2)One of the main 
ontribution of this work is a uniqueness result for smooth solutionsof (2) (and even for more general equations), without any restri
tion on their growth atin�nity (see Theorem 4.2); it immediately yields a 
omparison result for, possibly dis
on-tinuous, vis
osity solutions of (2) by the geometri
al approa
h of [6℄ (
f. Corollary 5.1),i.e. a 
omplete answer to the question we address. After this work was 
ompleted, welearn that Chou and Kwong [9℄ proved general uniqueness results for a 
ertain 
lass ofquasilinear paraboli
 equations in the one-dimensional 
ase: their hypothesis are of dif-ferent nature from ours and their methods are quite di�erent but their result, whi
h isalso valid for solutions without any restri
tion on their behavior at in�nity, in
ludes alsothe mean 
urvature equation.This kind of uniqueness results is non-standard: it is well-known that uniqueness fails,in general, if we do not impose growth 
onditions on the solutions at in�nity, like, forexample, the heat equation. The only (general) 
ase where similar results hold is the oneof �rst-order equations where they are a 
onsequen
e of \�nite speed of propagation" typeproperties (see Crandall and Lions [12℄, Ishii [19℄ and Ley [20℄) but they are very unusualfor se
ond-order equation.Our uniqueness proof for (2) 
onsists in integrating the equation, whi
h leads to 
on-sider the pde �v�t � ar
tan(vxx) = 0 in IR� (0;+1): (3)And this is this new equation whi
h is shown to satisfy a 
omparison prin
iple for vis
ositysolutions without growth 
ondition at in�nity.2



We refer the reader to Crandall, Ishii and Lions [11℄, Fleming and Soner [17℄, Bardiand Capuzzo Dol
etta [2℄ or Barles [3℄, et
. for a presentation of the notion of vis
ositysolutions and for the key basi
 results.In fa
t, the 
omparison result we are going to prove and apply to (3) holds in IRN(and not only in dimension 1) and for more general equations of the type8<:�u�t + F (x; t;Du;D2u) = 0 in IRN � (0; T );u(�; 0) = u0 in IRN ; (4)where F is a 
ontinuous fun
tion from IRN� [0; T ℄�IRN�SN into IR and satis�es suitableassumptions (see (H1) and (H2) in Se
tion 2). Our proof relies essentially on the useof a \friendly giant method." This result implies the uniqueness for smooth solutions ofquite general equations in the one-dimension spa
e in
luding (2) as we mention it above(see Se
tion 4).Finally we investigate the 
onsequen
es of the existen
e and uniqueness of solutionsfor (2) from the geometri
al point of view. The geometri
al interpretation of (2) is thatthe graph of u at every time t � 0, namely�t := Graph(u(�; t));is a smooth hypersurfa
e of IR2 whi
h evolves by its mean 
urvature. Su
h evolutionhas been studied re
ently by the so-
alled \level-set approa
h": introdu
ed for numeri
alpurposes by Osher and Sethian [21℄, this approa
h was developed by Evans and Spru
k[14℄ and Chen, Giga and Goto [8℄; the generalized motion of hypersurfa
es is des
ribedthrough the evolution of the level-sets of solutions of a suitable geometri
al pde. Thisapproa
h o�ers a lot of advantages: it is possible to deal with nonsmooth hypersurfa
es,it allows numeri
al 
omputations, et
. The main issue is the agreement with the 
lassi
almotion de�ned in di�erential geometry. These questions were addressed by a lot of authors(see espe
ially Evans and Spru
k [14℄, [15℄ and Ilmanen [18℄).Our uniqueness result allows us to show that, in the 
ase of the mean 
urvature motionof any entire 
ontinuous graph in IR2, the level-set approa
h agrees with the 
lassi
almotion de�ned in di�erential geometry. As a by-produ
t, we have a 
omparison resultbetween possibly dis
ontinuous vis
osity sub and supersolutions of (2) and therefore theuniqueness holds even in the 
lass of dis
ontinuous solutions. We refer to Se
tion 5 forthe 
omplete statement of these results.The paper is divided as follows. In Se
tion 2, we prove the strong 
omparison prin-
iple for vis
osity solutions of equation (4). Se
tion (3) is devoted to the proof of theexisten
e of a solution for (4). In Se
tion 4, we apply the previous result to uniqueness forsome one-dimensional equations in
luding (2) as a parti
ular 
ase. In the last se
tion, westate some geometri
al 
onsequen
es for the mean 
urvature 
ow in IR2 and more generalgeometri
al motions. 3
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hanges.2 A 
omparison result for vis
osity solutions withoutgrowth 
onditions at in�nityIn order to state the 
omparison prin
iple for vis
osity solutions of equation (4), we usethe following assumptions in whi
h �B(x0; R) = fx 2 IRN : jx� x0j � Rg denotes the ballof radius R > 0 
entered in x0 2 IRN and SN the spa
e of N � N symmetri
 matri
es;moreover, for every symmetri
 matrix X = P (diag(�i)1�i�N)P T ; where the �i's are theeigenvalues of X and P is orthogonal, we de�ne X+ = P (diag(�+i )1�i�N)P T :(H1) For any R > 0; there exists a fun
tion mR : IR+ ! IR+ su
h that mR(0+) = 0 andF (y; t; �(x� y); Y )� F (x; t; �(x� y); X) � mR ��jx� yj2 + jx� yj� ;for all x; y 2 �B(0; R); t 2 [0; T ℄; X; Y 2 SN ; and � > 0 su
h that�3�� I 00 I � � � X 00 �Y � � 3�� I �I�I I � :(H2) There exists 0 < � < 1 and 
onstants K1 > 0 and K2 > 0 su
h thatF (x; t; p;X)� F (x; t; q; Y ) � K1jp� qj(1 + jxj) +K2(Tr[Y �X℄+)�;for every (x; t; p;X; Y ) 2 IRN � IRN � [0; T ℄� SN � SN :Our result is the followingTheorem 2.1 Assume that (H1) and (H2) hold and let u (respe
tively v) be an upper-semi
ontinuous vis
osity subsolution (respe
tively lower-semi
ontinuous vis
osity superso-lution) of (4). If u(�; 0) � v(�; 0) in IRN ; then u � v in IRN � [0;+1):Before proving this result, let us 
omment the assumptions. Assumption (H1) is the
lassi
al one to ensure uniqueness for this type of fully nonlinear paraboli
 equations (seeCondition (3.14) of [11℄): here we just state it in a more lo
al way. The assumption (H2)
ontains all the restri
tion whi
h allows su
h a result to hold: the �rst term of the right-hand side is the 
lassi
al one to obtain \�nite speed of propagation" type results while these
ond one 
on
erns the behavior of F in D2u, and in parti
ular at in�nity as (3) showsit. Obviously su
h an assumption or a related one is needed sin
e su
h a result 
annotbe true for the heat equation. A nonlinearity F whi
h satis�es (H2) is ne
essarily of the4



form F1(x; t; p) + F2(x; t;X). We also point out that (H2) implies that F is degenerateellipti
. We do not know if these assumptions are 
lose or far to be optimal.As an example of pde whi
h satis�es (H1){(H2), we have�u�t � �(a(x; t)�u)+�� + b(x; t)jDuj = f(x; t) in IRN � (0; T );where a; b are 
ontinuous fun
tions on IRN � (0; T ), Lips
hitz 
ontinuous in x uniformlywith respe
t to t, f 2 C(IRN � (0; T )) and 0 < � < 1.Now we turn to the proof of the theorem.Proof of Theorem 2.1. The proof is done in two steps: the �rst one is a kind oflinearization pro
edure whi
h yields a new pde for u� v: The se
ond one 
onsists in the
onstru
tion of a suitable smooth supersolution of this new pde whi
h blows up at theboundary of balls.The �rst step is des
ribed in theLemma 2.1 Under the assumptions of Theorem 2.1, the upper-semi
ontinuous fun
tion! := u� v is a vis
osity subsolution ofA[!℄ = �!�t �K1(1 + jxj)jD!j �K2�Tr(D2!)+�� = 0 in IRN � (0;+1): (5)Moreover !(�; 0) � 0 in IRN .Then the se
ond step relies on theLemma 2.2 There exists 
 > 0 and k > � > 0 su
h that, for R > 0 large enough, thesmooth fun
tion�R(x; t) = '�(1 +R2) 12 (1� 
t)� (1 + jxj2) 12� with '(r) = R�=rk; (6)is a stri
t supersolution of (5) in the domainD(
; R) = f(x; t) 2 IRN � [0; T ℄ : 
t < 12 ; (1 + jxj2) 12 < (1 +R2) 12 (1� 
t)g : (7)We postpone the proof of the lemmas and we �rst 
on
lude the proof of the theorem.We 
onsider supD(
;R)f! � �Rg ; sin
e �R goes to +1 on the lateral side of D(
; R), thissupremum is a
hieved at some point (�x; �t) 2 D(
; R).We 
annot have �t > 0 be
ause, otherwise sin
e by Lemma 2.1 ! is a vis
osity subso-lution of (5), we would have A[�R(�x; �t)℄ � 0, whi
h would 
ontradi
t the fa
t that �R isa stri
t supersolution of this pde by Lemma 2.2.5



Thus, ne
essarily �t = 0 and the maximum is nonpositive sin
e !(�; 0) � 0 and�R(�; 0) > 0 in IRN . It follows that, for every (x; t) 2 D(
; R);(u� v)(x; t) � R�[(1 + R2) 12 (1� 
t)� (1 + jxj2) 12 ℄k : (8)In order to 
on
lude, we let R go to +1 in this inequality for t < 1=2
 : sin
e k > � > 0,we obtain (u� v)(x; t) � 0 for any x 2 IRN . To prove the same property for all t 2 [0; T ℄,we iterate in time and the proof of the theorem is 
omplete. 2We turn to the proof of the lemmas.Proof of Lemma 2.1. Let � 2 C2(IRN � (0;+1)) and suppose that (�x; �t) 2 IRN �(0;+1) is a stri
t lo
al maximum point of !� � = u� v� � and more pre
isely a stri
tmaximum point of this fun
tion in �B(�x; �)2 � [�t� �; �t + �℄.We 
onsider, for " > 0,max�B(�x;�)2�[�t��;�t+�℄�u(x; t)� v(y; t)� �(x; t)� jx� yj2"2 � : (9)By 
lassi
al arguments, it is easy to prove that the maximum in (9) is a
hieved at points(x"; y"; t") su
h that(x"; y"; t")! (�x; �x; �t) and jx" � y"j2"2 ! 0 as "! 0: (10)Hen
e, for " small enough, (x"; y"; t") 2 B(�x; �) � B(�x; �) � (�t � �; �t + �) and following[11℄, there exist a; b 2 IR; X; Y 2 SN ; su
h that, if we set p" := 2(x" � y")"2 , we have(a;D�(x"; t") + p"; X +D2�(x"; t")) 2 �P2;+u(x"; t") ;(b; p"; Y ) 2 �P2;�v(x"; t")and su
h that a� b = ���t (x"; t") and� 6"2 � I 00 I � � � X 00 �Y � � 6"2 � I �I�I I � :Using that u and v are respe
tively vis
osity sub- and supersolution of (4), we have���t (x"; t") + F �x"; D�(x"; t") + p"; X +D2�(x"; t")�� F (y"; p"; Y ) � 0:6



From (H1) applied with R = j�xj+ �, we have�F (y"; p"; Y ) � �F (x"; p"; X)�mR �2 jx" � y"j2"2 + jx" � y"j�and from (H2), we getF �x"; D�(x"; t") + p"; X +D2�(x"; t")�� F (x"; p"; X)� �K1jD�(x"; t")j(1 + jx"j)�K2 �Tr(D2�(x"; t"))+�� :Finally, we obtain���t (x"; t")�K1jD�(x"; t")j(1 + jx"j)�K2 �Tr(D2�(x"; t"))+��� mR �2 jx" � y"j2"2 + jx" � y"j� :Letting " go to 0 and using (10) yields���t (�x; �t)�K1jD�(�x; �t)j(1 + j�xj)�K2 �Tr[D2�(�x; �t)℄+�� � 0whi
h is exa
tly the inequality showing that ! is a subsolution of (5). 2Proof of Lemma 2.2. In order to 
he
k that � is a stri
t supersolution for a suitable
hoi
e of 
onstants k > � > 0 and 
 > 0 independent of R, we set r = (1+R2)1=2(1�
t)�(1 + jxj2)1=2 and note that, for (x; t) 2 D(
; R); we have r 2 [0; �R℄ where �R = p1 +R2:Moreover, the fun
tion ' is de
reasing 
onvex, i.e.'0 < 0; '00 � 0 on (0; �R℄:The 
omputation of the derivatives of � gives���t = �
(1 +R2) 12'0; D� = �'0 x(1 + jxj2) 12 ;D2� = �'0  I(1 + jxj2) 12 � x
 x(1 + jxj2) 32 !+ '00 x
 x1 + jxj2 :Substituting the derivatives in A[�℄ (see Lemma 2.1), we haveA[�℄(x; t) = �
(1 +R2)1=2'0(r)�K1(1 + jxj)j'0(r)j jxj(1 + jxj2)1=2�K2 Tr"�'0(r) I(1 + jxj2) 12 � x
 x(1 + jxj2) 32 !+ '00(r) x
 x1 + jxj2#+!� (11)7



for all (x; t) 2 D(
; R):We estimate (11) from below. First�K1(1 + jxj)j'0(r)j jxj(1 + jxj2) 12 � 2K1'0(r) �R; (12)for every (x; t) 2 D(
; R) sin
e j'0(r)j = �'0(r) � 0: Noti
ing that the matri
esX = �'0(r) I(1 + jxj2) 12 � x
 x(1 + jxj2) 32 ! and Y = '00(r) x
 x1 + jxj2are nonnegative and, using the inequality (a + b)� � a� + b� for a; b � 0 and 0 < � < 1;we obtain(Tr[X + Y ℄+)� = (TrX + TrY )� � (TrX)� + (TrY )� � N�(�'0(r))� +N�('00(r))�: (13)From (11), (12) and (13), it followsA[�℄(x; t) � �'0(r)(
� 2K1) �R�K2N��� '0(r)�� �K2N��'00(r)��� k(
� 2K1) �R R�rk+1 �K 02 R��r�(k+1) �K 03 R��r�(k+2)� R�rk+1�k(
� 2K1) �R�K 02R(��1)�r(k+1)(1��) �K 03R(��1)�r(k+1)��(k+2)| {z }S(r) � (14)where K 02 and K 03 are positive 
onstants whi
h depend only on N;K2; k and �:We want to 
hoose 
; � and k in order that the quantity S(r) in (14) is positive. We�rst 
hoose k su
h that the quantity S(r) is nonin
reasing on [0; �R℄ : sin
e the exponent(k + 1)(1 � �) of the �rst term in r is already positive for every 
hoi
e of k > 0, it isenough to take k � 2�� 11� � =) (k + 1)� �(k + 2) � 0 ; (15)in order to ensure that the exponent of the se
ond term in r is also positive.We are then left to 
hoose parameters in order to have S( �R) > 0 ; to do so, a ne
essary
ondition is 
learly 
 > 2K1 : (16)Using the fa
t that R � p1 +R2 = �R, we haveS( �R) = k(
� 2K1) �R�K 02R(��1)� �R(1��)(k+1) �K 03R(��1)� �R(k+1)��(k+2)� k(
� 2K1) �R�K 02 �R(1��)(k+1��) �K 03 �R(��1)�+(k+1)��(k+2):8



Now it is 
lear that, if we 
an take the exponents of �R in the two last terms stri
tlyless than 1, then we are done sin
e for large R, the right-hand side of the inequality wouldbe stri
tly positive.This yields the following 
onditions(1� �)(k + 1� �) < 1; (17)(�� 1)� + (k + 1)� �(k + 2) < 1: (18)We re
all that 0 < � < 1 ; on one hand, an easy 
omputation shows that Condition (18)is automati
ally satis�ed when (17) holds. On the other hand, Condition (17) holds if we
hoose � su
h that k > � > k � �1� �: (19)Finally, we 
an �x all the 
onstants in order to ful�ll (15), (16) and (19) and thus all therequired properties of � are satis�ed. 2In fa
t, a 
lose look at the proof of Theorem 2.1 shows that the existen
e of the\friendly giants" �R allows to get some lo
al estimate on the di�eren
e between twosolutions. It leads to the following kind of stability result whi
h will be useful later.Proposition 2.1 Let (F")">0 a family of 
ontinuous fun
tions satisfying assumptions(H1) and (H2) uniformly with respe
t to ". Assume that there exists 
ontinuous vis
ositysolutions u" and v" of equation (4) with F repla
ed by F" su
h that (u"�v")(�; 0) 
onvergeslo
ally uniformly to 0 in IRN . Then u"�v" 
onverges lo
ally uniformly to 0 in IRN� [0; T ℄.Proof of Proposition 2.1. Sin
e the general 
ase will follow by iterating in time, we onlyprove the result for t � 1=2
 re
alling that 
 is the 
onstant appearing in the de�nitionof the \friendly giants" �R (see (6)).We �rst observe that, for any R > 0, the fun
tion u"� supB(0;R)f(u"� v")(�; 0)g is stilla solution of (4) with F repla
ed by F" and that we haveu"(�; 0)� supB(0;R)f(u" � v")(�; 0)g � v"(�; 0) in B(0; R) :Sin
e F" satis�es (H2) independently of "; we get from inequality (8) that, for all(x; t) 2 D(
; R); u"(x; t)� v"(x; t) � supB(0;R)f(u" � v")(�; 0)g+ �R(x; t):In order to prove that u" � v" 
onverges lo
ally uniformly to 0, we take an arbitrary� > 0 and (x; t) in a 
ompa
t subset K of IRN� [0; 1=2
℄. For R suÆ
iently large, we have�R(x; t) � �=2 inK. Then, for " suÆ
iently small, we have supB(0;R)f(u"�v")(�; 0)g � �=2:Therefore u"(x; t)� v"(x; t) � � in K. And thus lim sup"!0 supK (u" � v") � 0.By ex
hanging the roles of u" and v", we obtain the lower estimate and the proof is
omplete. 29



3 Existen
e result for equation (4)In this se
tion we use the 
omparison theorem to get the following existen
e result.Theorem 3.1 Suppose that (H1) and (H2) hold. Then, for every initial datum u0 2C(IRN); there exists a unique 
ontinuous vis
osity solution of (4).Proof of Theorem 3.1. The uniqueness part is given by Theorem 2.1. For the exis-ten
e, we set '"(r) := minfmaxfr;�1="g; 1="g for every r 2 IR and " > 0 and 
onsidertrun
ations of pde (4) of the form�u�t + F"(x; t;Du;D2u) = 0; (20)where F" = '" ÆF: Noti
ing that '"(a)�'"(b) � maxfa� b; 0g; we see that the F" satisfyassumptions (H1) and (H2), uniformly with respe
t to ":We �rst get an existen
e result for (20) using Perron's method. Sin
e jF"(x; t; p;M)j �1=" for all (x; t; p;M); the fun
tion �u"(x; t) := u0(x) + t=" (respe
tively u"(x; t) :=u0(x) � t=") is a supersolution (respe
tively a subsolution) of (20). Theorem 2.1 pro-vides a strong 
omparison result for (20) and therefore Perron's method applies readilygiving the existen
e of a 
ontinuous solution u" of (20) with initial datum u0.The next step 
onsists in deriving a lo
al L1-bound for the family (u")">0 we builtabove. To do so, we use of the \friendly giants" introdu
ed in Se
tion 2. Let R; 
 > 0and D(
; R) de�ned by formula (7). We setCR = 2 supB(0;R) ju0j; KR = 2 supD(
;R) jF (�; �; 0; 0)j � 2 supD(
;R) jF"(�; �; 0; 0)j;and we 
onsider the fun
tions (x; t) 7! �CR � KRt � �R(x; t) and (x; t) 7! CR +KRt +�R(x; t) in D(
; R). Tedious but straightforward 
omputations shows that these fun
tionsare respe
tively sub- and supersolution of (20) in D(
; R) and it is 
lear that we have�CR��R(x; 0) � u"(x; 0) � CR+�R(x; 0) in B(0; R). Then, easy 
omparison argumentsshow that �CR �KRt� �R � u" � CR +KRt+ �R in D(
; R) :It follows that the family (u")">0 is bounded in D(
; R=2) independently of ": Iterating intime, we get the lo
al boundedness of (u")">0 in IRN � [0;+1):Finally we apply the \half-relaxed-limits" method whi
h 
onsists in introdu
ing�u = lim sup"!0+ �u" and u = lim inf"!0+ �u"whi
h are well-de�ned be
ause of the lo
al L1-bound on the u"'s. Moreover, they are bothdis
ontinuous solutions of (4) with initial datum u0 sin
e (F") 
onverges lo
ally uniformlyto F: The strong 
omparison result for (4) (Theorem 2.1) shows that �u = u := u and u isthe desired 
ontinuous solution of (4) we wanted to build. 210



4 Uniqueness for one-dimensional equationsIn this se
tion, we provide some appli
ations of the previous result in the 
ase of one-dimensional quasilinear paraboli
 equations. We address here only uniqueness questions.We 
onsider the equation8<: �u�t � (f(x; t; u; ux))x = 0 in D0(IR� (0;+1));u(�; 0) = u0 in IR; (21)where u0 2 C(IR); the nonlinearity f 2 C(IR� [0;+1)� IR� IR) and D0(IR� (0;+1))is the spa
e of distributions on IR � (0;+1): For reasons whi
h will be 
lear below, we
onsider only 
ases when the solution u is in C1(IR� (0;+1)).To state our result, we use the following assumption on f(H3) f is lo
ally Lips
hitz 
ontinuous in IR�(0;+1)�IR�IR and there exists 
onstantsC > 0 and 0 < � < 1 su
h that, for any t > 0 and x; y; u; v; p; q 2 IR, we havef(x; t; u; p)�f(y; t; v; q) � C �(1 + jpj+ jqj)jx� yj+ (1 + jxj+ jyj)ju� vj+ �(p� q)+��� :Note that this assumption imply (H1) and (H2) in the one-dimensional 
ase. Equa-tion (21) makes sense in the spa
e of distributions sin
e the assumed regularity for thesolution ensures that both u and f(x; t; u; ux) belong to L1lo
(IR� (0;+1)):Our result is theTheorem 4.1 Under assumptions (H3), Equation (21) has at most one solution inC1(IR� (0;+1)) \ C(IR� [0;+1)) for ea
h initial datum u0 2 C(IR):Proof of Theorem 4.1. We suppose, by 
ontradi
tion, that we have two solutionsu; v 2 C1(IR� (0;+1)) \ C(IR� [0;+1)) of Equation (21). For every " > 0; we de�ne~u"(x; t) = Z x0 u(y; t+ ") dy + Z t+"" f(0; �; u(0; �); ux(0; �)) d�and ~v" in the same way repla
ing u by v in the right-hand side of this equality.By standard arguments in the theory of distributions, one proves easily that ~u" and~v" are 
lassi
al solutions of�!�t � f(x; t+ "; !x; !xx) = 0 in IR� (0;+1) : (22)The fun
tions f(�; �+ "; �; �) satisfy assumptions (H1) and (H2) uniformly in "; and(~u" � ~v")(x; 0) = Z x0 (u(y; ")� v(y; "))dy11




onverges lo
ally uniformly to 0 in IR sin
e u(x; 0) = v(x; 0) = u0(x) in IR. Therefore,by applying Proposition 2.1, we dedu
e that ~u" � ~v" 
onverges to 0 lo
ally uniformly inIR� [0;+1).It follows, on one hand, that the integralZ t0 [f(0; �; u(0; �); ux(0; �))� f(0; �; v(0; �); vx(0; �))℄d�is well-de�ned (noti
e that it was not the 
ase a priori for R t0 f(0; �; u(0; �); ux(0; �))d�and R t0 f(0; �; v(0; �); vx(0; �))d�) and letting " go to 0, we obtain that, for all (x; t) 2IR� [0;+1);Z x0 (u� v)(y; t)dy + Z t0 [f(0; �; u(0; �); ux(0; �))� f(0; �; v(0; �); vx(0; �))℄d� = 0:To prove the result, we have just to di�erentiate this equality with respe
t to x: 2Remark 4.1 : It would be very interesting to be able to prove the above result byassuming only the solutions to be in W 1;1lo
 . The diÆ
ulty to do that would be in theintegration of equation (21) to get equation (22). Only few results exists in this dire
tionand mainly for �rst-order equations (
f. Corrias [10℄).A key appli
ation of the above result 
on
erns the mean 
urvature equation for graphsin IR:Theorem 4.2 The mean 
urvature equation for graphs (2) has a unique smooth solutionu 2 C(IR� [0;+1)) \ C1(IR� (0;+1)) for every initial datum u0 2 C(IR):Proof of Theorem 4.2. The existen
e part of the theorem 
omes from the result ofE
ker and Huisken [13℄ (see also [6℄). The uniqueness part is an immediate 
onsequen
eof Theorem 4.1 by taking f(p) = ar
tan(p): In this 
ase (21) reads exa
tly (2) and, sin
ethe fun
tion ar
tan is a smooth nonde
reasing bounded fun
tion whi
h lies in W 1;1(IR);thus in C0;�(IR) for every � 2 (0; 1); (H3) holds and therefore Theorem 4.1 applies. 25 Appli
ation to geometri
al motions in the planeWe 
onsider, in this se
tion, appli
ations for the mean 
urvature motion of graphs in theplane IR2. We �rst re
all brie
y some basi
 fa
ts about the level-set approa
h in the 
aseof the mean 
urvature motion.In this framework, the graph of the initial datum u0 2 C(IR) of (2) is representedas the hypersurfa
e �0 = f(x; y) 2 IR2 : u0(x) = yg in the plane. We also de�ne 
0 =12



f(x; y) 2 IR2 : u0(x) < yg and we take any uniformly 
ontinuous fun
tion v0 : IR2 ! IRsu
h that�0 = f(x; y) 2 IR2 : v0(x; y) = 0g and 
0 = f(x; y) 2 IR2 : v0(x; y) > 0g: (23)If X is the spa
e of fun
tions w : IR2 � (0;+1)! IR whi
h are uniformly 
ontinuousin IR2 � (0;+1) for all T > 0; by results of Evans and Spru
k [14℄ and Chen, Giga andGoto [8℄, there exists a unique vis
osity solution v 2 X of the geometri
al equation8<: �v�t � 1v2x + v2y (vxxv2y � 2vxyvxvy + vyyv2x) = 0 in IR2 � (0;+1);v(�; �; 0) = v0 in IR2:Moreover, if we de�ne, for every t � 0;�t = f(x; y) 2 IR2 : v(x; y; t) = 0g and 
t = f(x; y) 2 IR2 : v(x; y; t) > 0g; (24)then the sets (�t)t�0 and (
t)t�0 depend only on �0 and 
0 but not on the 
hoi
e of theirrepresentation through v0.The family (�t)t�0 is 
alled the generalized evolution by mean 
urvature of the graph�0. A natural issue is the 
onne
tion between this generalized evolution and the 
lassi
almotion by mean 
urvature. We re
all that in general �t is just de�ned as the 0-level setof a 
ontinuous fun
tion and therefore it may be nonsmooth and even fatten.In our 
ontext, we haveTheorem 5.1 If u0 2 C(IR); then, for every t � 0; the set �t is a entire smooth graph,namely �t = f(x; y) 2 IR2 : y = u(x; t)g;where u is the unique smooth solution of (2) with initial datum u0: Moreover, the evolu-tion of �t agrees with the 
lassi
al motion by mean 
urvature in the sense of di�erentialgeometry.Proof of Theorem 5.1. From [6℄, we know that, if we start with an hypersurfa
e �0whi
h is an entire 
ontinuous graph in IR� IR; then, for every t � 0;�t = f(x; y) 2 IR2 : u�(x; t) � y � u+(x; t)g;where u� and u+ are respe
tively the minimal and the maximal (possibly dis
ontinuous)vis
osity solution of (2). In the spe
ial 
ase of the mean 
urvature equation, we proved thatthe boundary of the front �t is smooth. It follows that u� and u+ are smooth. Uniquenessfor (2) in the 
lass of smooth fun
tions (see Theorem 4.2) implies that u� = u+ = u whereu is the unique solution to (2). Finally, �t = Graph(u(�; t)) is a smooth submanifold ofIR2 (in parti
ular, �t never fattens). In this 
ase, the generalized evolution 
oin
ides with13



the 
lassi
al evolution by mean 
urvature (see Evans and Spru
k [14℄ and [16℄ for theagreement with an alternative generalized motion). 2Using the previous geometri
al approa
h, we 
an state a re�nement of Theorem 4.2,namely a 
omparison result whi
h holds for any vis
osity sub- and supersolutions of (2).Corollary 5.1 If u1 (resp. u2) is an upper-semi
ontinuous vis
osity subsolution (respe
-tively lower-semi
ontinuous supersolution) of (2) and if u1(x; 0) � u0(x) � u2(x; 0) in IR,then u1 � u2 in IR� [0;+1):Proof of Corollary 5.1. This result is an immediate 
onsequen
e of a more generalresult in the 
ase of the mean 
urvature equation: uniqueness for smooth solutions implies
omparison in the 
lass of dis
ontinuous vis
osity solutions (see [6℄ for a proof). To beself-
ontained, we provide a short proof whi
h emphasizes the main ideas of the proof.By Theorem 6.1 in [6℄, sin
e u1 and u2 are respe
tively an us
 vis
osity subsolutionand a ls
 supersolution of (2), we haveGraph(u1(�; t)) � f(x; y) 2 IRN+1 : v(x; y; t) � 0g ;and Graph(u2(�; t)) � f(x; y) 2 IRN+1 : v(x; y; t) � 0g :Essentially, this 
omes from the preservation of in
lusion for sets moving by their mean
urvature in the level set approa
h (see Evans and Spru
k [14℄).We re
all that v is an in
reasing fun
tion of y but the above in
lusions do not give anyinformation about the relative position of Graph(u1(�; t)) and Graph(u2(�; t)) when thefronts �t(u0) develop interior. But, thanks to Theorem 5.1, we know that �t(u0) is exa
tlythe graph of u(�; t), where u is the unique smooth solution of (2) with initial datum u0.The front does not fatten and is the boundary of 
t(u0). It follows thatu1(�; t) � u(�; t) � u2(�; t) in IRN ;whi
h ends the proof. 2We 
on
lude this se
tion with an extension of the previous results to some more generalequations asso
iated to more general geometri
 motions. We 
onsider8<: �u�t � (f(ux))x = 0 in IR� (0;+1);u(�; 0) = u0 in IR; (25)where f 2 C1(IR): 14



Theorem 5.2 Let u0 2 W 1;1lo
 (IR): Suppose thatf 2 C1(IR) and 0 < f 0(p) � C1 + p2 for every p 2 IR: (26)Then (25) admits a unique solution u 2 C2(IR�(0;+1))\C(IR� [0;+1)): The general-ized evolution of �0 = Graph(u0) is �t = Graph(u(�; t)) for t � 0: It evolves with normalvelo
ity equal to V((x; y); t) = f 0(�
otan(�)) �sin2(�) ; (27)where � and � denote respe
tively the angle between the y-axis and the normal outwardve
tor and the 
urvature to �t at the point (x; y):Proof of Theorem 5.2. We 
onsider as above an uniformly 
ontinuous fun
tion v0 :IR2 ! IR su
h that fv0 = 0g = �0 and fv0 > 0g = 
0 := fy > u0(x)g: Following [6,Se
tion 4℄, if (26) holds, then8<: �v�t � f 0��vxvy� (vxx � 2vxy �vxvy�+ vyy �vxvy�2) = 0 in IR2 � (0;+1);v(�; �; 0) = v0 in IR2 (28)admits a unique solution v 2 X : The level set approa
h applies for the generalized evolu-tion (�t)t�0 of �0 and evolves formally with normal velo
ity given by (27).On a other hand, using Chou and Kwong [9℄, we learn from [6℄ that, again be
ause of(26), the boundary of �t is made of the graphs of two smooth solutions of (25), namelyu+ and u�: Noti
ing that (26) implies (H3), we obtain that (25) has a unique smoothsolution; thus u+ = u� := u and �t = Graph(u(�; t)): Finally, note that, sin
e �t issmooth, (27) holds in a 
lassi
al sense. 2Referen
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