
ne rien écrire	NOM Prénom + code barre Année universitaire 2020-202
Exo1:	2ème année STPI
Exo2:	
Exo3:	
Exo4:	
	DEVOIR SURVEILLÉ — ANALYSE 3
	Mercredi 13 janvier 2021 — durée : 2h30
	Tous documents et matériels électroniques interdits.
	Travailler avec un brouillon avant de rédiger synthétiquement.

calculs ni justifications dans cet exercice.

	Coo	cher	En cas de convergence :
	\mathbf{CV}	\mathbf{DV}	valeur ou somme
$\sum_{n=0}^{+\infty} \frac{1}{\pi^n}$			
$\sum_{n=1}^{+\infty} \frac{1}{\sqrt{n^2 + \sin(n) + 1}}$			
$\sum_{n=1}^{+\infty} \frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}}$			
$\int_{1}^{+\infty} \frac{\arctan(x)}{x} dx$			
$\int_{2}^{+\infty} \frac{\ln(x)}{x^2} dx$			

Valeurs de $\alpha \in \mathbb{R}$ pour que $\int_2^5 \frac{dx}{(x-2)^{\alpha}}$ converge :	
$f(x) = \sum_{n=0}^{+\infty} \frac{n! e^n}{n^n} x^n$ a pour rayon de convergence	R =
Si $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ avec $ a_n \underset{n \to +\infty}{\sim} n^2 5^n$ alors le rayon de convergence	R =

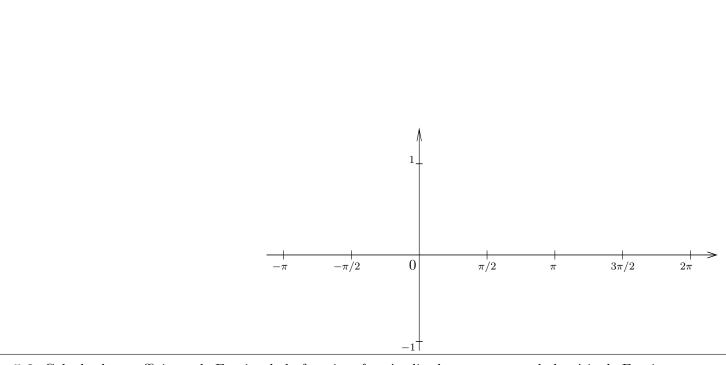
Exercice	3

3.1. Faire le développement en série entière de $h(x) = \frac{2x-1}{3+x}$ en x=0.

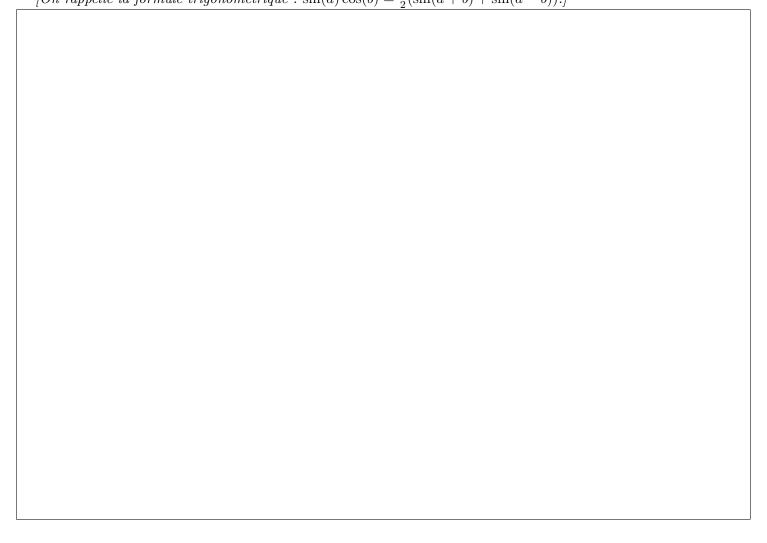
Rayon de convergence du développement obtenu : R =

3.2. Soit $g(x) = \sum_{n=2}^{+\infty} \frac{(-1)^n}{n-1} x^n$. Rayon de convergence : R =

Exprimer g(x) à l'aide des fonctions usuelles (dit autrement, calculer la somme).

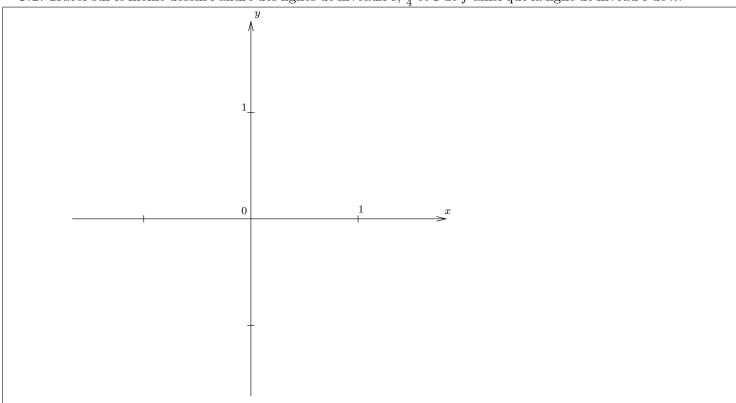

Exercice 4.

4.1. Démontrer que la série $\sum \frac{(-1)^n}{\sqrt{n}}$ converge. [Énoncer et vérifier les hypothèses des résultats utilisés.]


4.2. Démontrer que $\frac{(-1)^n}{\sqrt{n} + (-1)^n} = \frac{(-1)^n}{\sqrt{n}} - \frac{1}{n} + \frac{(-1)^n}{n\sqrt{n}} + o(\frac{1}{n\sqrt{n}}).$
(-1)n
4.3. Déduire des deux questions précédentes la nature de la série $\sum \frac{(-1)^n}{\sqrt{n} + (-1)^n}$.
4.4. Qu'a-t-on voulu mettre en évidence dans cet exercice?

Exercice 5. Soit la fonction f définie par $f(t) = |\sin(2t)|$ pour tout $t \in \mathbb{R}$.

5.1. Préciser la parité de f, montrer que f est périodique de période $T=\pi/2$ et représenter f sur $[-\pi, 2\pi]$


5.2. Calculer les coefficients de Fourier de la fonction f et étudier la convergence de la série de Fourier. [On rappelle la formule trigonométrique : $\sin(a)\cos(b) = \frac{1}{2}(\sin(a+b) + \sin(a-b))$.]

5.3. Calculer la somme de la série $\sum_{n=1}^{+\infty} \frac{1}{(4n^2-1)^2}.$
n=1 `
Exercice 6. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par $f(x,y) = x^4 + y^4 - 4xy$. Déterminer les points critiques de f et préciser leur nature (col, maximum local ou minimum local).

Exercice 7. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe C^1 . On effectue le changement de variable $x = \frac{u+v}{2}$
et $y = \frac{u-v}{2}$ de sorte que $f(x,y) = F(u,v)$.
7.1. Déterminer les dérivés partielles premières de F en fonction de celles de f .
7.2. En déduire l'ensemble des solutions de l'équation aux dérivés partielles $\frac{\partial f}{\partial x}(x,y) + \frac{\partial f}{\partial y}(x,y) = 2$.

Exercice 8. On considère sur \mathbb{R}^2 les fonctions : $f(x,y) = x^2y^2$ et $h(x,y) = x^2 + y^2 - 1$. **8.1.** Tracer sur le même dessin l'allure des lignes de niveaux $0, \frac{1}{4}$ et 1 de f ainsi que la ligne de niveau 0 de h.

8.2. On considère le problème : (I) Maximiser $f(x,y)$ sous la contrainte $h(x,y)=0$. a) Représenter graphiquement les solutions de (I) sur le dessin de la question 8.1. b) Calculer les solutions de (I) à l'aide du Lagrangien $\mathcal{L}(x,y,\lambda)=f(x,y)+\lambda h(x,y)$.
b) Calculer les solutions de (I) à l'aide du Lagrangien $\mathcal{L}(x,y,\lambda) = f(x,y) + \lambda h(x,y)$.