2ème année STPI

DEVOIR SURVEILLÉ — ANALYSE 3 Mercredi 8 novembre 2017 — durée : 1h30

Tous documents et matériels électroniques interdits. Travailler avec un brouillon avant de rédiger synthétiquement! Exercice 1. Nature des intégrales et séries ci-dessous. "CV" : converge, "DV" : diverge. Cocher une case à tort sera pénalisé. 1. $\sum_{n=2}^{+\infty} \frac{1}{2n^3 - 3}$ CVDV 2. $\sum_{n=0}^{+\infty} 2^{-1/n}$ CVDV 3. $\int_{0}^{+\infty} e^{-x} \sin x \ dx$ CVDV 4. $\sum_{1}^{+\infty} \frac{(-1)^n n^{1/2}}{\ln n}$ CVDV 5. $\sum_{n=0}^{+\infty} n(\cos(1/n) - 1)^2$ CVDV $6. \int_{0}^{+\infty} \frac{\sin x}{e^x - 1} dx$ CVDV Exercice 2. Que peut-on dire (égalité, majoration, minoration) des rayons de convergence R_i des séries entières $\sum_{n=0}^{+\infty} a_n z^n$ dans les cas suivants? 1. Si $a_n \ge \frac{1}{n}$ alors R_1 2. Si $a_n = n^2 2^{-n}$ alors R_2 3. Si $a_n = (-1)^n n^{-2} (1+3^n)$ alors R_3 4. Si $\sum_{n=0}^{\infty} a_n (-4)^n$ converge alors R_4

5. Si $\sum_{n=0}^{+\infty} a_n (-4)^n$ converge et $\sum_{n=0}^{+\infty} a_n 4^n$ diverge alors R_5

Exercice 3. On considère les trois intégrales suivantes

$$I := \int_0^{\pi/2} \ln t \, dt, \ J := \int_0^{\pi/2} \ln(\sin t) \, dt, \ K := \int_0^{\pi/2} \ln(\cos t) \, dt.$$

	_		_
1 Montrer	la convergen	ce et calculer	I
1. IVIOITOI	ia convergen	cc cu carcarci	1.

	_
2. En déduire la convergence de J .	

	· ·	· ·	
2 Montron out V I			
2 Monthon out of			

4. puis que $J + K = J - \pi/2 \ln 2$.

En déduire	J et K.					
xercice 4.	On cherche une	solution déve	eloppable en	série entière,	$y(x) = \sum_{x=0}^{+\infty} e^{-x}$	$a_n x^n$, du
$\begin{array}{c} \text{coblème }(P) \\ \text{Établir un} \end{array}$: $y''(x) - 2xy'(x)$ e relation de réc	y(x) - 4y(x) = 0 urrence sur le	y(0) = 0, s a_n puis en a_n	$y'(0) = 1$. déduire a_n en	fonction de r	i.
	ent, préciser le ra	iyon de conver	gence de la s	érie obtenue,	puis simplifie	r son ex-
ession.						

Exercice 5. Si q est un entier strictement positif, on définit $u_k := \frac{1}{k(k+1)(k+2)\dots(k+q)}$ pour $k \ge 1$ et $S_n = \sum_{k=1}^n u_k$. Montrer (par récurrence) que $S_n := \frac{1}{q} \left(\frac{1}{q!} - \frac{1}{(n+1)(n+2)\dots(n+q)} \right)$. En déduire $S = \sum_{k=1}^{+\infty} u_k$.