NOM Prénom + code barre	-

Année universitaire 2019-2020 2ème année STPI

DEVOIR SURVEILLÉ — ANALYSE 3 Jeudi 7 novembre 2019 — durée : 1h30
Tous documents et matériels électroniques interdits.
Travailler avec un brouillon avant de rédiger synthétiquement.
Exercice 1. Cocher une case Vrai/Faux à tort sera pénalisé.
1.1. Si $u_n \underset{n \to +\infty}{\to} 0$ alors $\sum_{n=0}^{+\infty} u_n$ converge.
1.2. Si $\sum_{n=0}^{+\infty} u_n$ converge alors $u_n \underset{n \to +\infty}{\to} 0$.
1.3. $\sum \frac{(-4)^n}{n!}$ converge :
1.4. Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction 2π -périodique paire définie par $f(t) = 1 - \frac{2t}{\pi}$ pour tout $t \in [0, \pi]$.
Les coefficients de Fourier de f sont :
$a_0 = $ et pour $n \ge 1$, $a_n = $, $b_n = $
1.5. Rayon de convergence de $\sum \ln(n)x^n$: $R = $
1.6. Développer en série entière : $\frac{x^2}{3+2x} = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}$, $R = \begin{bmatrix} & & \\ & & \\ & & \\ & & \end{bmatrix}$
1.7. Si $\sum a_n x^n$ est de rayon convergence R_a et $\sum b_n x^n$ est de rayon convergence R_b
alors le rayon de convergence R de $\sum (a_n + b_n)x^n$ est tel que $R \ge$
Exercice 2. Soit $I = \int_0^{+\infty} \frac{x \ln x}{(x^2 + 1)^2} dx$.
2.1. Démontrer que I converge.

2.2. Faire le changement de variable $y = 1/x$ sur l'intégrale $\int_0^1 \frac{x \ln x}{(x^2 + 1)^2} dx$ et en déduire la valeur de I .
Exercice 3. Pour $n \ge 1$, on définit les suites $a_n = \frac{n!e^n}{\sqrt{n}n^n}$ et $u_n = \ln(a_n) - \ln(a_{n+1})$.
$\sqrt{n}n^n$ 3.1. Démontrer que $u_n = (n + \frac{1}{2}) \ln (1 + \frac{1}{n}) - 1$ puis que la série $\sum u_n$ converge en faisant un développemen limité de u_n .
3.2. Déduire de la question précédente que la suite $(\ln(a_n))$ converge vers un réel k . En conclure la formule
de Stirling $n! \underset{n \to +\infty}{\sim} e^k \sqrt{n} \left(\frac{n}{e}\right)^n$.

Exercice 4. Le but de l'exercice est de démontrer que f	\int_0^1	$\frac{\ln t}{1+t^2}dt =$	$\sum_{n=0}^{+\infty} \frac{(-1)^{n+1}}{(2n+1)^2}.$
---	------------	---------------------------	---

4.1. Prouver que l'intégrale généralisée et la série numérique ci-dessus convergent.

4.2. Écrire le développement en série entière de $\frac{1}{1+t^2}$ en précisant son rayon de convergence.

4.3. Démontrer que $\int_0^1 \ln t \sum_{n=0}^N (-1)^n t^{2n} dt = \sum_{n=0}^N \frac{(-1)^{n+1}}{(2n+1)^2}$.

4.4. Démontrer que pour tout $t \in]0,1[$, $\left| \ln t \sum_{n=N+1}^{+\infty} (-1)^n t^{2n} \right| = \left| (-1)^{N+1} \frac{t^2 \ln t}{1+t^2} t^{2N} \right| \le M t^{2N}$

où $M = \sup_{t \in]0,1[} \frac{t^2 \ln t}{1+t^2}$. (On justifiera que ce supremum est fini.)

$ c_1 + \infty$
4.5. En déduire que $\left \int_0^1 \ln t \sum_{n=N+1}^{+\infty} (-1)^n t^{2n} dt \right \le \frac{M}{2N+1}$.
4.6. Déduire de 4.2, 4.3 et 4.5 que $\left \int_0^1 \frac{\ln t}{1+t^2} dt - \sum_{n=0}^N \frac{(-1)^{n+1}}{(2n+1)^2} \right \le \frac{M}{2N+1}$ et conclure.