ne rien écrire	NOM Prénom + code barre	Année universitaire 2024-2025
Exo1:		2ème année STPI
Exo2:		
Exo3:		
Exo4:	DEVOIR SURVEILLÉ — AN	IALYSE 3
	Mardi 5 novembre 2024 — du	
	Tous documents et matériels électron Travailler avec un brouillon avant de rédig	-
CV signifie conv	ocher les cases correctes ci-dessous. On ne demande regence et DV signifie divergence. Le à tort sera pénalisé mais pas de pénalisation pour	-
1.1. $\sum \frac{1}{(-1)^{n+2}}$, ,	
1.2. $\int_0^1 \frac{\sqrt{x} + \sin(x)}{\sin(x)} dx$	$\frac{x}{x^3} dx$	
1.3. $\sum \frac{2^n + n^2}{3^n + n^3}$	CV DV	
1.4. Valeurs de	$a \in \mathbb{R}$ telles que $\sum \frac{n}{1 + n^{2a}} \text{ CV}$:	
1.5. Valeurs de	$\alpha \in \mathbb{R}$ telles que $\int_0^{+\infty} \frac{\arctan(x)}{x^{\alpha}} \ \mathrm{CV} :$	
1.6. $S = \sum_{n=1}^{+\infty} \frac{1}{\sqrt{n}}$	$\frac{1}{n+1} - \frac{1}{\sqrt{n}}$ CV DV. En cas d	e CV : $S =$
1.7. Si $\sum a_n x^n$ convergence	e égal à R .	lors $\sum (a_n + b_n)x^n$ a aussi un rayon de
1.8. Soit $f(x) =$	$=\sum_{n=0}^{+\infty} \frac{(-1)^n x^n}{3^{n+1}}.$ Rayon de convergence $R=$	
Valeur de la	a somme $f(x) =$	
1.9. Développen	ment en série entière en $x = 0$ de $g(x) = \frac{x}{3x + 2} = $	
Rayon de C	CV du développement en série entière $R = $	
1.10. $\sum_{n=2}^{+\infty} \frac{2^n}{(n-1)^n}$	<u> </u>	

Exercice 2. Démontrer que $I = \int_1^{+\infty} \frac{dt}{t+t^3}$ converge.	
Calculer la valeur de I .	
Exercice 3. Le but est de démontrer qu'il existe une constante $C \in \mathbb{R}$ telle que $n! \underset{n \to +\infty}{\sim} C$	$Jn''e^{-n}\sqrt{n}.$
Soit $u_n = \frac{n^n e^{-n} \sqrt{n}}{n!}$ pour $n \ge 1$. Prouver que $\ln\left(\frac{u_{n+1}}{u_n}\right) = \left(n + \frac{1}{2}\right) \ln\left(1 + \frac{1}{n}\right) - 1$.	
	$ (u_{m+1})$
En utilisant un développement limité à l'ordre 3 de l'expression précédente, démontrer que \sum	$\int \ln\left(\frac{u_{n+1}}{u_n}\right)$ converge

E. 1/1.i 1
En déduire que la suite (u_n) converge puis conclure.
Exercice 4. Déterminer la solution de l'équation différentielle :
y''(x) + 2xy'(y) + 2y(y) = 0 $y(0) = 2y'(0) = 0$
$y''(x) + 3xy'(x) + 3y(x) = 0, y(0) = 2, \ y'(0) = 0.$
$+\infty$
Chercher $y(x)$ sous la forme d'une série entière $\sum_{n=0}^{+\infty} a_n x^n$. Démontrer que $a_n=0$ pour n impair et établir une
relation de récurrence pour $b_p = a_{2p}$ afin de déterminer a_n pour n pair. Calculer le rayon de convergence de la
relation de récurrence pour $b_p = a_{2p}$ afin de déterminer a_n pour n pair. Calculer le rayon de convergence de la
série entière obtenue et exprimer la somme à l'aide des fonctions usuelles.

