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Travaillez au brouillon avant de rédiger synthétiquement en n’utilisant que la place prévue.
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Exercice 1.

I.1. Les questions faisant apparâıtre des cases à cocher peuvent présenter zéro, une ou plusieurs bonnes réponses. Des

points négatifs seront affectés à de mauvaises réponses comme suit : une question dont toutes les réponses sont bonnes

vaut X points et une question dont au moins une réponse est mauvaise vaut −X
2 points.

Questions Réponses

1. La série numérique de terme général un = exp(
1

n
)−a− b

n
est

□ convergente pour a ̸= 1 et b = 1

□ convergente pour a = 1 et b = 1

□ divergente pour a = 1 et b ̸= 1

2. La valeur de la série numérique de terme général

un = 1p
n−1

− 2p
n
+ 1p

n+1
vaut

□ +∞

□
2−p

2

2

□ 1+ 1p
2

3. L’intégrale généralisée

∫ +∞

0

x ln(x)

(1+x2)2 est
□ convergente

□ divergente

4. La valeur de l’intégrale généralisée

∫ 1

0

ln(x)

x2 dx vaut
□ +∞
□

1

3

□ 1− ln(3)

5. Pour la série de Fourier S(f) et les coefficients de Fourier
an(f), pour n ≥ 0, associés à la fonction 2π-périodique
f :R→R telle que f(x) =π− | x | sur ]−π,π], on a

□ S(f)(x) = f(x), ∀x ∈R
□ S(f)(x) = f(x), ∀x ̸= kπ, avec k ∈Z
□ a0(f) = 1

6. Soit
+∞∑
n=0

anxn une série entière de rayon de convergence R.

La série numérique de terme général un = anrn
0 , avec

r0 ∈]0,R[, est

□ normalement convergente

□ divergente

□ absolument convergente

□ convergente

7. Soient a ∈R et f : [a,+∞[→R une fonction continue. Pour

tout x dans [a,+∞[, on pose : F(x) =
∫ x

a
f(t)dt. On considère

les propositions suivantes :

(i)

∫ +∞

a
| f(t) | dt est convergent, (ii) La fonction F admet

une limite finie en +∞. On a

□ si f est positive (i) ≠⇒ (ii)

□ si f est positive (ii) =⇒ (i)

□ si f n’est pas de signe constant (i) =⇒ (ii)

□ si f n’est pas de signe constant (ii) =⇒ (i)

Exercice 2.

2.1. Soient r > 0 et f : x ∈]− r,r [ 7−→ f (x) une fonction de classe C ∞ sur ]− r,r [. Supposons qu’il existe M > 0 et

x0 > 0 tels que ∀n ∈N, ∀x ∈]− r,r [ on a | f (n)(x) |≤ Mxn
0 . Montrer que f (x) =

∞∑
n=0

an xn en précisant la valeur des

coefficients an , ∀n ∈N.
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2.2. On considère la série entière
∑

n≥1
an xn de rayon de convergence R.

(i) Déterminer le rayon de convergence R dans le cas où la suite (an) tend vers une limite l ̸= 0,
(ii) Soit α> 0, déterminer le rayon de convergence Rα de la série entière

∑
n≥1

(an)αxn , dans le cas où an > 0, ∀n ≥ 1.

2.3. On considère la série entière
∑

n≥2

x2n

n(n −1)4n . Déterminer le rayon R et le domaine de convergence ∆ de cette

série, et calculer sa somme S(x) =
+∞∑
n=2

x2n

n(n −1)4n , ∀x ∈]−R,R[.
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Exercice 3.

3.1. On considère la fonction f : x ∈R 7−→ f (x) = exp(− x2

2 ).
a) Déterminer le développement en série entière en 0 de f .

b) Montrer que

∫ 1

0
f (x)d x =

∞∑
n=0

(−1)nun , avec la suite un à déterminer.

3.2. Déterminer une fonction impaire y :R 7−→R développable en série entière en 0 (dont on déterminera le rayon
de convergence R > 0) solution de l’équation : y ′(x)−x y(x)−1 = 0.
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Exercice 4.

On note par Γ la constante d’Euler vérifiant Γ= lim
n→+∞(Sn − ln(n)), avec Sn =

n∑
k=1

1

k
.

a) Montrer que ∀n ∈N∗ et ∀t ∈]0,1] on a
1− (1− t )n

t
=

n−1∑
k=0

(1− t )k .

b) En déduire que
n∑

k=1

1

k
=

∫ 1

0

1− (1− t )n

t
d t ,∀n ∈N∗.

c) Montrer que A =
∫ 1

0

1−exp(−t )

t
d t et B =

∫ 1

0

exp(−1
t )

t
d t sont convergentes.

d) On pose An =
∫ 1

0

1− (1− t
n )n

t
d t et Bn =

∫ n

1

(1− t
n )n

t
d t et on admet que lim

n→+∞An = A et lim
n→+∞Bn = B.

Montrer que An = Sn −
∫ n

1

1

t
d t +Bn . En déduire la valeur de

∫ 1

0

1−exp(−t )−exp(−1
t )

t
d t en fonction de Γ.
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