

Centre de Mathématiques

DS Analyse 4 – 9 novembre 2012 – durée 1h30

Tous documents et appareils électroniques interdits.

Exercice 1

1.1. Quelle est la nature de la série numérique $\sum_{n=0}^{+\infty} \frac{2^{n+1}}{n!}$?

- **1.2.** Quelle est la nature de la série numérique $\sum_{n=1}^{+\infty} \frac{(-1)^n}{\ln(n) + 1}$?
- **1.3.** Calculer la somme de la série numérique $\sum_{n=2}^{+\infty} \left(\frac{1}{\sqrt{n-1}} + \frac{1}{\sqrt{n+1}} \frac{2}{\sqrt{n}} \right).$

Exercice 2 Pour x > 0, on définit $f(x) = \ln\left(1 + \frac{1}{x^2}\right)$.

- **2.1.** Donner rapidement l'allure de la représentation graphique de f sur $]0,+\infty[$.
- **2.2.** Rappeler le développement limité de $\ln(1+u)$ en 0. Démontrer que l'intégrale généralisée $\int_{1}^{+\infty} f(x)dx$ converge.
- **2.3.** Calculer $\int_{1}^{+\infty} f(x)dx$.

 [Indication : on pourra utiliser une intégration par parties.]
- **2.4.** Que peut-on dire au sujet de la nature de la série numérique $\sum_{n=1}^{+\infty} f(n)$?

Exercice 3 Soit f la fonction paire de période 2π définie par $f(t) = \pi - t$ pour $t \in [0, \pi]$.

- **3.1.** Calculer les coefficients de Fourier de f.
- **3.2.** Donner le développement en série de Fourier S(f) de f, étudier sa convergence et préciser pour quels t, on a l'égalité f(t) = S(f)(t).
- **3.3.** En déduire la somme de la série $\sum_{n=0}^{\infty} \frac{1}{(2p+1)^2}.$
- **3.4.** Calculer ensuite $\sum_{p=0}^{\infty} \frac{1}{(2p+1)^4}.$