DEVOIR SURVEILLÉ TRONC COMMUN 3ème année MATHÉMATIQUES

Durée: 2h

DOCUMENTS, PORTABLES ET CALCULATRICES INTERDITS

Prénom :

Cochez directement vos réponses sur le sujet pages 2 et 3.

Il peut y avoir plusieurs bonnes réponses dans chacune des questions du QCM.

Toute réponse fausse sera comptée négativement.

Intégration et transformée de Fourier

1.	On note $L^1(I)$ l'ensemble des fonctions intégrables sur l'intervalle I de $\mathbb{R},$	et $L^2(I)$ l'ensem	ıble
de	s fonctions de carré intégrable sur I. Alors		

2. On a

3. L'intégrale double $\int_{[0,+\infty]^2} e^{-\frac{1}{2}(x^2+y^2)} dx dy$ est égale à

$$\square \pi \qquad \square \frac{\pi}{\sqrt{2}} \qquad \square \frac{\pi}{2} \qquad \square \frac{\pi}{2\sqrt{2}} \qquad \square \frac{\pi}{4} \qquad \square \frac{\pi}{4\sqrt{2}}$$

4. La transformée de Fourier de la fonction $\left(x \mapsto \begin{cases} x^2 e^{-x} & \text{si } x \geq 0 \\ 0 & \text{si } x < 0 \end{cases}\right)$ en $\xi \in \mathbb{R}$, est égale à

5. À l'aide du théorème de Plancherel appliqué à $\mathcal{F}\left(e^{-2\pi|x|}\right)$, le calcul de $\int_{\mathbb{R}} \frac{d\xi}{(1+\xi^2)^2}$ donne

6. À l'aide de $\mathcal{F}\left(1_{\left[-\frac{1}{2\pi},\frac{1}{2\pi}\right]}\right)$, le calcul de $\int_{\mathbb{R}} \left(\frac{\sin\xi}{\xi}\right)^2 d\xi$ donne

7. Soit $f(x):=e^{-\pi x^2},\,x\in\mathbb{R}.$ La transformée de Fourier de f*f en $\xi\in\mathbb{R},$ est égale à

Variables complexes

variables complexes
8. Soit $f(z) = \frac{1}{z+2i}$ et $C(0,1)^+$ le cercle de centre 0 et de rayon 1 orienté dans le ser trigonométrique. On a :
$\ \ \ \ \ \ \ \ \ \ \ \ \ $
$\ \ \ \ \ \ \ \ \ \ \ \ \ $
9. Le développement en série entière au voisinage de 1 de la fonction f de la question 8 est :
il n'existe pas
10. Le rayon de convergence de la série entière obtenue dans la question 9 est :
$\ \ \ \ \ \ \ \ \ \ \ \ \ $
11. Le résidu de $g(z) = \frac{1}{(z^2 + 1)^3}$ en $z = i$ est :
\square il n'existe pas \square 0 \square $\frac{3\pi}{8}$ \square $-\frac{3i}{16}$ \square $-\frac{3i}{8}$.
12. Combien vaut $\int_{-t^2+t^2+t^2}^{+\infty} \frac{dt}{t^2+t^2+t^2}$?

Correction du DS de janvier 2011 Tronc Commun 3ème année – Mathématiques

- 1. 3 bonnes réponses : $\left(x \mapsto \frac{e^{-x^2}}{\sqrt{x}}\right) \in L^1([0,+\infty[),\left(x \mapsto \frac{x}{x^2+1}\right) \in L^2(\mathbb{R}),\left(x \mapsto \frac{\sin x}{x}\right) \in L^2(\mathbb{R}).$
- 2. 2 bonnes réponses conséquences du théorème de convergence dominée : $\lim_{n \to +\infty} \int_0^1 \left(\frac{1+x}{2}\right)^n dx = \lim_{n \to +\infty} \int_0^{+\infty} \frac{e^{-nx}}{\sqrt{x}} dx = 0$
- 3. Par un changement de variables en coordonnées polaires : $\int_{[0,+\infty[^2} e^{-\frac{1}{2}(x^2+y^2)} dx dy = \frac{\pi}{2} \int_0^{+\infty} e^{-\frac{r^2}{2}} r dr = \frac{\pi}{2}.$
- **4.** En intégrant deux fois par parties : $\hat{f}(\xi) = \frac{2}{(1+2i\pi\,\xi)^3}$.
- **5.** Calcul fait en cours : $\int_{\mathbb{R}} \frac{d\xi}{(1+\xi^2)^2} = \frac{\pi}{2}.$
- **6.** Calcul fait en cours : $\int_{\mathbb{R}} \left(\frac{\sin \xi}{\xi} \right)^2 d\xi = \pi.$
- 7. Soit $f(x) := e^{-\pi x^2}$. On a $\hat{f}(\xi) = f(\xi)$ (cours), d'où $\widehat{f * f}(\xi) = (\hat{f}(\xi))^2 = e^{-2\pi \xi^2}$.
- 8. 3 bonnes réponses : La fonction f est une fraction rationnelle avec un pôle simple en -2i. Elle est donc holomorphe sur l'ouvert $\mathbb{C}\setminus\{-2i\}$. En particulier, le disque fermé $\overline{D}(0,1)$ de centre 0 et de rayon 1 est un compact à bord inclus dans $\mathbb{C}\setminus\{-2i\}$; par le théorème de Cauchy, $\int_{C(0,1)^+} f(z)dz = 0$.
- $\mathbf{9.}\ f$ étant holomorphe en 1, elle est développable en série entière au voisinage de 1 :

$$f(z) = \frac{1}{1+2i+(z-1)} = \frac{1}{1+2i} \frac{1}{1+\frac{z-1}{1+2i}} = \frac{1}{1+2i} \sum_{n=0}^{+\infty} \frac{(-1)^n}{(1+2i)^n} (z-1)^n = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(1+2i)^{n+1}} (z-1)^n.$$

- 10. Le rayon de convergence R est le rayon du plus grand disque ouvert de centre 1 inclus dans $\mathbb{C}\setminus\{-2i\}$, soit $R=|1-(-2i)|=\sqrt{5}$ (distance de 1 à -2i). On pouvait aussi utiliser la règle de d'Alembert avec le développement obtenu dans la question précédente $(\sum a_n(z-1)^n$ avec $a_n=(-1)^n(1+2i)^{-n-1}$).
- 11. Le calcul a été fait en cours, on trouve -3i/16.
- 12. L'intégrale vaut $I=2\pi/\sqrt{3}$. Il y a trois manières de le voir. Appelons $h(t)=(1+t+t^2)^{-1}$.
 - Par déduction : h étant clairement intégrable sur \mathbb{R} , $+\infty$ est exclu. h étant une fonction strictement positive, 0 et tout nombre qui n'est pas réel sont exclus. Il reste 1 et $2\pi/\sqrt{3}$ comme possibilité. Mais $I > \int_1^{+\infty} dt/t^2 = 1$ donc $I = 2\pi/\sqrt{3}$.
 - Par l'analyse complexe (démarche attendue) : c'est une intégrale du 2ème type (cf. cours),

$$h(z) = \frac{1}{z^2 + z + 1} = \frac{1}{(z - \mathbf{j})(z - \bar{\mathbf{j}})}$$
 avec $\mathbf{j} = e^{2i\pi/3}$ et $\bar{\mathbf{j}} = e^{-2i\pi/3}$.

Par la formule des résidus,

$$\int_{\gamma_r} h(z) dz = 2\pi i \operatorname{R\acute{e}s}(h, j) = 2\pi i \frac{1}{j - \bar{\mathbf{j}}} = \frac{\pi}{\sin \frac{2\pi}{2}} = \frac{2\pi}{\sqrt{3}}.$$

où γ_r est le contour utilisé pour les intégrales du 2ème type, l'union du segment [-r,r] et du demi-cercle supérieur de rayon r, pour r>0 assez grand. En calculant directement l'intégrale sur le contour et en faisant $r\to +\infty$, on obtient $I=2\pi/\sqrt{3}$.

- On calcule I en se ramenant, par changement de variable, à la dérivée d'arctan :

$$I = \int_{-\infty}^{+\infty} \frac{dt}{(t+1/2)^2 + 3/4} = \frac{4}{3} \int_{-\infty}^{+\infty} \frac{dt}{\left(\frac{2t+1}{\sqrt{2}}\right)^2 + 1} = \frac{2}{\sqrt{3}} \int_{-\infty}^{+\infty} \frac{ds}{s^2 + 1} = \frac{2}{\sqrt{3}} \left[\arctan(s)\right]_{-\infty}^{+\infty} = \frac{2\pi}{\sqrt{3}}.$$

4