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“Viscosity solutions, HJ Equations and Control”–O.Ley (INSA de Rennes)

Exam – February 2010 – 3h

– Written-by-hands documents are allowed.
– Printed documents, computers, cellular phones are forbiden.
– The text is composed of 4 pages.
– Do not worry about the length of the text. It is not necessary to answer all ques-
tions to have the maximum mark.
– Answer seriously, rigorously and clearly the questions you choose to work.
– You may use without proof the results which were proven in the lecture.
– Exercises in Part I are independent. Part II, III and IV can be treated indepen-
dently in any order.
– For the correction see my webpage: http://www.lmpt.univ-tours.fr/∼ley (teach-
ing)

Notations: In R
N

, we consider the classical Euclidean inner product

〈x, y〉 =
N

∑

i=1

xiyi for all x = (x1, x2, . . . , xN ), y = (y1, y2, . . . , yN ) ∈ R
N

.

The Euclidean norm is written | · | or || · ||:

|x| = ||x|| = 〈x, x〉1/2 =

√

√

√

√

N
∑

i=1

x
2
i .

I. Preliminaries exercises

I.1. Let f : R
N → R be a bounded continuous function. For any α > 0, we define

Mα = sup
x∈RN

{f(x) − α||x||} and M = sup
x∈RN

{f(x)}.

Prove that lim
α→0

Mα = M.

I.2. Let f : R
N → R be a continuous function. Suppose that f is not differentiable

at x0 ∈ R
N . Prove that either D+f(x0) = ∅ or D−f(x0) = ∅.

I.3. Let f : R
N → R be a K-Lipschitz continuous function (K > 0), that is,

|f(x) − f(y)| ≤ K||x− y|| for all x, y ∈ R
N .

Let x̄ ∈ R
N . Prove that: if p̄ ∈ D+f(x̄), then ||p̄|| ≤ K.



I.4. Let ψ : R
N ×R

P → R be a C1 function. Let C be a compact subset of R
P . We

define
ϕ(x) = inf

y∈C
ψ(x, y).

Let x0 ∈ R
N y0 ∈ C be such that ϕ(x0) = ψ(x0, y0). Prove that

Dxψ(x0, y0) ∈ D+ϕ(x0)

(Dxψ denotes the gradient of ψ with respect to the x variable).

II. The distance function is a viscosity solution to the Eikonal equation

Let Ω ⊂ R
N be an open bounded subset. We consider the Eikonal equation

{

||Du|| = 1 in Ω,
u = 0 on ∂Ω.

(1)

The subset ∂Ω = Ω \ int(Ω) is the boundary of Ω, Ω is its closure and int(Ω) is its
interior. Notice that ∂Ω and Ω are compact subset of R

N .

We introduce the distance function to ∂Ω:

d∂Ω(x) = inf
y∈∂Ω

||y − x||.

II.1. Show that d∂Ω is 1-Lipschitz continuous in R
N and that, d∂Ω(x) = 0 if and

only if x ∈ ∂Ω.

II.2. Let x ∈ Ω and p ∈ D+d∂Ω(x). Prove that ||p|| ≤ 1 and conclude that d∂Ω is a
viscosity subsolution of (1) in Ω.

II.3. Let x0 ∈ Ω. We distinguish two cases.

II.3.1. Case 1: there exists a unique y0 ∈ ∂Ω such that d∂Ω(x0) = ||x0 − y0||. Prove
that d∂Ω is then differentiable at x0 and that ||Dd∂Ω(x0)|| = 1.
[You may use, without proof, some results of an exercise solved during the lecture.]

II.3.2. Case 2: assume that y0 in Case 1 is not unique. Prove that (x0−y0)/||x0 − y0|| ∈
D+d∂Ω(x0). Conclude that, either d∂Ω(x0) is differentiable at x0 with ||Dd∂Ω(x0)|| =
1, or d∂Ω is not differentiable at x0 and D−d∂Ω(x0) = ∅. Conclude that d∂Ω is a
supersolution of (1).
[You may use I.4 and I.2.]

II.3.3. Draw a quick picture which illustrates Case 1 and Case 2 in II.3.1 and II.3.2.

II.4. Conclude that d∂Ω is a viscosity solution of (1).
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III. The distance function is the unique viscosity solution of (1).

We use the notations and the definitions of Section II.

III.1. Write the Hamiltonian H(x, r, p) associated with (1). Does this Hamiltonian
satisfy (H1)? (H2)? ((H1) and (H2) are the assumptions introduced in the Section
“Uniqueness” in the lecture).

It follows that we cannot apply directly the uniqueness theorem (stationary case)
proven in the lecture.

III.2. We make the change of function v = Φ(u) = −exp(−u) in (1). Prove that v
satisfies a new Hamilton-Jacobi equation

{

F (v,Dv) = 0 in Ω,
v = c on ∂Ω.

(2)

Give F (r, p) and the constant c.
[You can use the result of the lecture about the change of functions in Hamilton-
Jacobi equations without proof. But you have to justify that Φ is an admissible
change of function.]

III.3. Prove that the new Hamiltonian F satisfies (H1) and (H2) and conclude that
(2) (and therefore (1)) has a unique viscosity solution.

IV. Optimal control

You can apply, without proof, all the results about optimal control which were
proven in the lecture.

We consider the controlled ordinary differential equation
{

Ẋx(s) = α(s) for 0 < s ≤ T,
Xx(0) = x ∈ R,

(3)

where the control α ∈ L∞([0, T ]) is such that

α(s) ∈ [0, 1] for almost all s ∈ [0, T ].

We consider the control problem of minimizing, among all admissible control, the
cost

J(x, t, α(·)) =

∫ t

0

ds+ u0(Xx(t)),

where x ∈ R, t ∈ [0, T ] and u0 is a given real-valued bounded Lipschitz continuous
function. We introduce as usual the value function

V (x, t) = inf
α∈L∞([0,T ]),|α|≤1 a.e.

{J(x, t, α(·))}
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IV.1. Write the general form of the solution of (3). What is the trajectory Xx(t)
when T = 1, α(s) = 1 for 0 ≤ s ≤ 1/2 and α(s) = −s for 1/2 < s ≤ 1?

IV.2. Find a Hamilton-Jacobi-Bellman equation such that the value function V is
the unique viscosity solution.

IV.3. Check (formally) that W (x, t) = V (x, t)− t is the unique viscosity solution of







∂u

∂t
+

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

= 0 in R × (0, T ),

u(x, 0) = u0(x) in R.

Deduce a formula for V (x, t).

IV.4. Let u0(x) = 1. What is V (x, t) in this case?

IV.5. Let u0(x) = 1
1+x2 . What is V (x, t) in this case?

IV.6. Let u0(x) = sin(x). Prove that V (x, t) = −1 + t if t ≥ π.

—————————— END ——————————

4



Master 2 Mathématiques et Applications–PUF Ho Chi Minh Ville–2009/10
“Viscosity solutions, HJ Equations and Control”–O.Ley (INSA de Rennes)

CORRECTION of the exam of February 2010

I.1. α ∈ [0,+∞) 7→Mα ∈ R is a nonincreasing function bounded from above by M = M0 < +∞ since f is bounded.
It follows that limα→0Mα exists and is less than M. For any ǫ > 0, there exists xǫ ∈ R

N such that M ≤ f(xǫ) + ǫ.
Therefore

M ≤ f(xǫ) − α||xǫ|| + α||xǫ|| + ǫ ≤ Mα + α||xǫ|| + ǫ.

Sending α→ 0, we get M ≤ limα→0Mα + ǫ. Sending ǫ→ 0, we conclude.

I.2. It suffices to prove that, if D+f(x0) and D−f(x0) are both nonempty, then f is differentiable at x0. Suppose
that p ∈ D+f(x0) and q ∈ D−f(x0). By definition, for all h ∈ R

N , we have

f(x0 + h) − f(x0) − 〈p, h〉 ≤ o(||h||) and f(x0 + h) − f(x0) − 〈q, h〉 ≥ o(||h||). (4)

It follows 〈q− p, h〉 ≤ o(||h||). For h = λ||q− p|| (for small λ > 0), we get ||q− p||2 ≤ o(λ) which implies, by sending
λ → 0, p = q. Coming back to (4), we finally obtain f(x0 + h) − f(x0) − 〈p, h〉 = o(||h||) which proves that f is
differentiable at x0 with Df(x0) = p.

I.3. Using that p̄ ∈ D+f(x̄) and that f is K-Lipschitz, we have, for h ∈ R
N ,

−K||h|| − 〈p̄, h〉 ≤ f(x̄+ h) − f(x̄) − 〈p̄, h〉 ≤ o(||h||).

If p̄ = 0, the inequality is obvious. Otherwise, we can choose h = −λp/||p|| for small λ > 0. It follows λ(−K+ ||p||) ≤
o(λ). Dividing by λ and sending λ→ 0, we obtain the desired inequality.

I.4. Writing that ψ is differentiable with respect to x at x0, that ϕ(x0) = ψ(x0, y0) and that ϕ(x0+h) ≤ ψ(x0+h, y0),
we have

ϕ(x0 + h) − ϕ(x0) − 〈Dxψ(x0, y0), h〉 ≤ ψ(x0 + h, y0) − ψ(x0, y0) − 〈Dxψ(x0, y0), h〉 = o(||h||).

The inequality ϕ(x0 + h) − ϕ(x0) − 〈Dxψ(x0, y0), h〉 ≤ o(||h||) proves that Dxψ(x0, y0) ∈ D+ϕ(x0).

II.1. Using that “inf(a) − inf(b) ≤ sup(a − b)”, we have, for all x, x′ ∈ R
N ,

d∂Ω(x) − d∂Ω(x′) ≤ inf
y∈∂Ω

||y − x− (y − x′)|| = ||x− x′||.

Let x̄ ∈ R
N . Since ∂Ω is a compact subset and y 7→ ||y − x̄|| is continuous in R

N , there exists ȳ ∈ ∂Ω such that
d∂Ω(x̄) = ||ȳ − x̄||.It follows that d∂Ω(x̄) = 0 if and only if ȳ = x̄, i.e., x̄ ∈ ∂Ω.

II.2. It is an immediate consequence of II.1, I.3 and the equivalent definition of viscosity solution using the sub- and
superdifferentials.

II.3.1. We use the exercise we did during the lecture about the properties of the function ϕ defined in I.4. Since
x0 ∈ Ω, the function y 7→ ||y− x0|| is C1 in a neighborhood of ∂Ω (in fact, in any open subset containing ∂Ω which
does not contain x0). The uniqueness of y0 for which the minimum is achieved then implies that d∂Ω is differentiable
at x0 and

Dd∂Ω(x0) = D(||y0 − ·||)(x0) =
x0 − y0

||x0 − y0||
thus ||Dd∂Ω(x0)|| =

‚

‚

‚

‚

x0 − y0

||x0 − y0||

‚

‚

‚

‚

= 1.

II.3.2. If the minimum is not achieved at some unique y0, we saw in the exercise that d∂Ω may be not differen-
tiable at x0 and we cannot proceed as in II.3.1. In this case, (x, y) 7→ ||y − x|| is C1 in the open set B(x0, ǫ) × O
(O is a neighborhood of ∂Ω and ǫ is small enough in order that O ∩ B(x0, ǫ) = ∅). From I.4., we obtain that
D(||y0 −·||)(x0) = (x0 − y0)/||x0 − y0|| belongs to D+d∂Ω(x0). In particular D+d∂Ω(x0) is not empty. Now, either
D−d∂Ω(x0) is empty, or D−d∂Ω(x0) is also not empty. In the first case, the condition “d∂Ω is a supersolution
at x0” is automatically fulfilled. In the second case, from I.2, we have that d∂Ω(x0) is differentiable at x0 with
Dd∂Ω(x0) = (x0 − y0)/||x0 − y0||. It follows that ||Dd∂Ω(x0)|| = 1 which proves, as in II.3.1, that d∂Ω is a super-
solution at x0.

II.3.3. On the picture 1, the open set Ω can be divided in Ω = D ∪ (Ω \D). For all x0 in the open set Ω \D, there
is a unique y0 ∈ ∂Ω such that d∂Ω(x0) = ||x0 − y0|| and d∂Ω is differentiable. On the contrary, if x0 lies on the line
D, there are two different y0, y′0 ∈ ∂Ω such that d∂Ω(x0) = ||x0 − y0|| = ||x0 − y′0||. At such points x0, we can prove
that d∂Ω is not differentiable.
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Figure 1: Illustration of the cases in II.3.1 and II.3.2.

II.3.4. From II.2 and II.3, we know that d∂Ω is a viscosity solution in Ω. From II.1, we obtain that d∂Ω = 0 on ∂Ω
and therefore the boundary conditions are satisfied. Finally d∂Ω is a viscosity solution of (1).

III.1. The Hamiltonian H associated with (1) is H(x, r, p) = ||p|| − 1 for all x, p ∈ R
N and r ∈ R. This Hamiltonian

does not depend on x and r. It satisfies obviously (H1) since H(x, r, p) −H(y, r, p) = 0 but it does not satisfy (H2)
since, if r ≥ s, then H(x, r, p) −H(y, s, p) = 0 (in other word (H2) holds with γ = 0 whereas one requires γ > 0 in
the uniqueness theorem of the lecture). It follows that we cannot apply directly the uniqueness result of the lecture.
We have to extend the uniqueness result to this “degenerate” case. There are several ways to proceed. One, which
is left as an exercise, consists in repeating the uniqueness proof of the lecture by considering

Mµ,ε = sup
x,y∈Ω

{µu(x) − v(y) −
||x− y||2

ε2
}

for ε > 0 and some fixed 0 < µ < 1. The idea is to do an analogous proof with the fixed parameter µ which will
help, and to send µ → 1 at the end of the proof to conclude. Here we choose an alternative way to overcome the
difficulty: we do a change of function.

III.2. The function Φ : R → R is C1 and increasing. It is therefore an admissible change of function (result in the
lecture). An easy computation shows that, if v = −exp(−u), then Du = −Dv/v and therefore, using that v ≤ 0,

||Du|| − 1 = 0 ⇔

‚

‚

‚

‚

Dv

v

‚

‚

‚

‚

− 1 = 0 ⇔ ||Dv|| + v = 0.

Moreover, u = 0 ⇔ v = −1. It follows that v is solution to (2) with F (x, r, p) = ||p|| + r and c = −1. The new
Hamiltonian F satisfies now clearly (H1) and (H2) (with γ = 1 > 0). Therefore (2) has at most one solution
(uniqueness) but, since, if u is solution to (1), then Φ(u) is solution to (2); we have also uniqueness for (1). We
conclude that (1) has a unique viscosity solution which is d∂Ω by Part II.

IV.1. We have (see the lecture), Xx(t) = x +
R t
0 α(s)ds. If T = 1, α(s) = 1 for 0 ≤ s ≤ 1/2 and α(s) = −s for

1/2 < s ≤ 1, we have

Xx(t) = x+ t for 0 ≤ t ≤
1

2
, Xx(t) = x+

5

8
−
t2

2
for

1

2
≤ t ≤ 1.

The trajectory is absolutely continuous (and even C1 except at t = 1/2).

IV.2. Using the notations of the lecture, we have that: the control set A is [−1, 1] which is a compact subset
of R; b(x, α) = α is bounded by 1 and obviously Lispchitz continuous with respect to x; f(x, α) = 1 which is
obviously bounded and Lipschitz continuous. Finally u0 is bounded Lipschitz continuous by assumption. From
the lecture, we then know that the value function V of the control problem is the unique viscosity solution of the
Hamilton-Jacobi-Bellman equation
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<

:

∂u

∂t
+

˛

˛

˛

˛

∂u

∂x

˛

˛

˛

˛

= 1 in R × (0, T ),

u(x, 0) = u0(x) in R

(H(x, p) = sup
α∈[−1,1]

{−b(x, α)p − f(x, α)} = |p| − 1).

IV.3. Set W (x, t) = V (x, t) − t. Then

∂V

∂t
=
∂W

∂t
+ 1,

∂V

∂x
=
∂W

∂x
and V (x, 0) = u0(x) = W (x, 0).

It follows that W is the unique viscosity solution of the equation in IV.3. In the lecture, we gave a formula for the
unique viscosity solution W of this equation: we have, for all x ∈ R, t ∈ [0, T ],

V (x, t) = W (x, t) + t = inf
|y−x|≤t

{u0(y)} + t. (5)

IV.4,5,6. These questions are easy computations from the formula (5). We find V (x, t) = 1 + t when u0 = 1. When
u0(x) = 1/(1 + x2) (which is increasing on R− and decreasing on R+), then V (x, t) = 1/(1 + (x + t)2) + t when
x ≥ 0 and V (x, t) = 1/(1 + (x− t)2) + t when x ≤ 0. The last example looks more complicated but the minimum
of sinus is −1 and, for any x0 ∈ R, there is y0 such that |x0 − y0| ≤ π and sin(y0) = −1. It follows from (5) that, if
t ≥ π, then inf|y−x|≤t{sin(y)} = −1 and therefore V (x, t) = −1 + t.
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