Master de Mathématiques-Ho Chi Minh Ville-2011/12
"Optimal control and Hamilton-Jacobi Equations"-O.Ley (IRMAR, INSA de Rennes)
Exam - November 2011-4h

- Written-by-hands documents are allowed.
- Printed documents, computers, cellular phones are forbidden.
- The text is composed of 4 pages.
- The 4 exercises are independent and can be treated in any order. Even in an exercise, most of the questions are independent.
- Do not worry about the length of the text. It is not necessary to answer all questions to have the maximum mark.
- Answer seriously, rigorously and clearly the questions you choose to work.
- You may use without proof the results which were proven in the lecture.
- For the correction see my webpage: http://ley.perso.math.cnrs.fr/ (teaching)

Notations: In \mathbb{R}^{N}, we consider the classical Euclidean inner product

$$
\langle x, y\rangle=\sum_{i=1}^{N} x_{i} y_{i} \quad \text { for all } x=\left(x_{1}, x_{2}, \ldots, x_{N}\right), y=\left(y_{1}, y_{2}, \ldots, y_{N}\right) \in \mathbb{R}^{N} .
$$

The Euclidean norm is written $|\cdot|($ or $\|\cdot\|):|x|=\|x\|=\langle x, x\rangle^{1 / 2}=\left(\sum_{i=1}^{N} x_{i}^{2}\right)^{1 / 2}$.

Exercise I.

You are given two big sheets of metal, one with thickness e and the other with thickness $2 e$ (e is fixed). You have to realize a can (a cylinder, see Figure 1) with maximal volume using the sheet with thickness e for the lateral part and the sheet with double tickness $2 e$ for the top and the bottom of the can. Moreover the total volume of the metal is prescribed to be α.
I.1. Explain why the problem consists in solving

$$
\sup x^{2} y \text { under the constraint } 2 x^{2}+x y=\text { constant. }
$$

I.2. Prove that such a can exists.
I.3. Find the radius x and the height y of an optimal can. Is such a can unique?

Figure 1: The can

Exercise II.

For $\varepsilon, C>0$ and every $(x, t) \in \mathbb{R}^{N} \times(0,+\infty)$, we define

$$
L^{\varepsilon}(x, t)=\left(|x|^{2}+\varepsilon^{2}\right)^{1 / 2}-\varepsilon+C t
$$

II.1. Prove that L^{ε} is a C^{1} function on $\mathbb{R}^{N} \times(0,+\infty)$ for $\varepsilon>0$. Is it still true for $\varepsilon=0$?
II.2. Prove that L^{ε}, for $\varepsilon>0$, is a viscosity supersolution of the equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}-C|D u|=0 \quad \text { in } \mathbb{R}^{N} \times(0,+\infty) \tag{1}
\end{equation*}
$$

II.3. Prove by two different methods that L^{0} is a viscosity supersolution of (1).
II.4. Prove that L^{0} is a viscosity subsolution of (1).
II.5. Let $\psi: \mathbb{R}^{N} \rightarrow \mathbb{R}$ be a C^{1} increasing function. Prove that $\psi\left(L^{\varepsilon}\right)$ is still a viscosity supersolution of (1).
II.6. If now $\psi: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a continuous nondecreasing function, is the result of II.5. still true?
[I do not ask for a complete proof: if you think that the result is not true anymore, explain briefly why. If you think it is still true, explain how you would prove it.]

Exercise III.

We consider the stationary Hamilton-Jacobi equation

$$
\begin{equation*}
H(x, u(x), D u(x))=0 \quad \text { in } \mathbb{R}^{N} \tag{2}
\end{equation*}
$$

We assume that H is coercive with respect to the gradient variable, that is:

$$
\begin{equation*}
H(x, r, p) \rightarrow+\infty \quad \text { when }|p| \rightarrow+\infty \tag{3}
\end{equation*}
$$

uniformly with respect to $x \in \mathbb{R}^{N}$ and $r \in[-R, R]$ for any $R>0$.
We want to prove that every bounded continuous viscosity subsolution u of (2) is Lipschitz continuous in \mathbb{R}^{N}.
III.1. Give an example of H which satisfies (3).
III.2. Show that (3) implies that, for every $R>0$, there exists a constant $C=$ $C(H, R)>0$ such that

$$
\forall x \in \mathbb{R}^{N}, \forall r \in[-R, R], \forall p \in \mathbb{R}^{N}, \quad H(x, r, p) \leq 0 \quad \Rightarrow \quad|p| \leq C
$$

In order to prove the result, for a fixed $x \in \mathbb{R}^{N}$, we consider

$$
\sup _{y \in \mathbb{R}^{N}}\{u(y)-K|y-x|\},
$$

and we denote $\varphi_{x, K}(y)=K|y-x|$.
III.3. Explain why this supremum is well-defined and is achieved at some \bar{y}.
III.4. Prove that the supremum cannot be achieved at some $\bar{y} \neq x$ if K is chosen larger than some \bar{K}. Explain that \bar{K} depend on C (see III.2) and $\|u\|_{\infty}=\sup _{\mathbb{R}^{N}}|u|$ but not on x.
[Indication: show that, if $\bar{y} \neq x$, then $\varphi_{x, K}$ is C^{1} in a neighborhood of \bar{y} and use $\varphi_{x, K}$ as a test-function for the subsolution u.]
III.5. Write that the supremum is achieved at $\bar{y}=x$ and conclude.

Exercise IV.

We consider the controlled ordinary differential equation

$$
\begin{cases}\dot{X}_{x}(s)=b\left(X_{x}(s), \alpha(s)\right), & s>0, \tag{4}\\ X_{x}(0)=x & x \in \mathbb{R}^{N}\end{cases}
$$

where the control $\alpha(\cdot) \in L^{\infty}([0,+\infty) ; \bar{B}(0,1))$ (the set of controls is the closed ball $\bar{B}(0,1))$ and $b \in C\left(\mathbb{R}^{N} \times \bar{B}(0,1), \mathbb{R}^{N}\right)$ is Lispchitz continuous and bounded with respect to x, that is, there exists $C_{b}>0$ such that

$$
\begin{equation*}
|b(x, \alpha)| \leq C_{b} \quad \text { and } \quad|b(x, \alpha)-b(y, \alpha)| \leq C_{b}|x-y| \quad \text { for all } x, y \in \mathbb{R}^{N}, \alpha \in \bar{B}(0,1) \tag{5}
\end{equation*}
$$

We recall that, for every $\alpha(\cdot) \in L^{\infty}([0,+\infty) ; \bar{B}(0,1))$ and $x \in \mathbb{R}^{N}$, (4) has a unique solution $X_{x} \in A C([0,+\infty))$.
We introduce the cost

$$
J(x, \alpha(\cdot))=\int_{0}^{+\infty} e^{-s} f\left(X_{x}(s), \alpha(s)\right) d s
$$

where $f \in C\left(\mathbb{R}^{N} \times \bar{B}(0,1), \mathbb{R}\right)$ is Lispchitz continuous with respect to x, that is, there exists $C_{f}>0$ such that

$$
\begin{equation*}
|f(x, \alpha)-f(y, \alpha)| \leq C_{f}|x-y| \quad \text { for all } x, y \in \mathbb{R}^{N}, \alpha \in \bar{B}(0,1) \tag{6}
\end{equation*}
$$

We define the value function of the related infinite horizon problem by

$$
V(x)=\inf _{\alpha(\cdot) \in L^{\infty}([0,+\infty) ; \bar{B}(0,1))} J(x, \alpha(\cdot))
$$

We admit that Theorems 4 and 6 of the lecture are true (even if the cost f is not bounded with respect to x) that is, V is a viscosity solution of the stationary Hamilton-Jacobi equation

$$
\begin{equation*}
H(x, u(x), D u(x))=0 \quad \text { in } \mathbb{R}^{N}, \tag{7}
\end{equation*}
$$

where
$H(x, r, p)=\sup _{\alpha \in \bar{B}(0,1)}\{-\langle b(x, \alpha), p\rangle+r-f(x, \alpha)\} \quad$ for all $x \in \mathbb{R}^{N}, r \in \mathbb{R}, p \in \mathbb{R}^{N}$.

We say that a function $u: \mathbb{R}^{N} \rightarrow \mathbb{R}$ has linear growth if u satisfies:

$$
\begin{equation*}
\exists C_{1}, C_{2}>0 \text { such that }|u(x)| \leq C_{1}+C_{2}|x| \tag{9}
\end{equation*}
$$

IV.1. Prove that (6) implies that f has linear growth uniformly with respect to α, that is, there exists $C_{1}, C_{2}>0$ such that $|f(x, \alpha)| \leq C_{1}+C_{2}|x|$ for all $x \in \mathbb{R}^{N}$, $\alpha \in \bar{B}(0,1)$.
IV.2. Prove that the value function has linear growth (see (9)).
[You can prove that $\left|X_{x}(t)\right| \leq|x|+C t$ for some $C>0$ and then use IV. 1 to obtain an estimate of V.]
IV.3. Prove that H given by (8) satisfies

$$
\begin{gather*}
\exists \gamma>0 \quad \text { such that } \quad H(x, r, p)-H(x, s, p) \geq \gamma(r-s) \tag{H1}\\
\\
\text { (H2) } \quad \text { for all } r \geq s, x \in \mathbb{R}^{N}, p \in \mathbb{R}^{N} ; \\
(H 2) \quad \exists C>0 \quad \text { such that }|H(x, r, p)-H(y, r, p)| \leq C(1+|p|)|x-y| \\
\\
\\
\text { (H4 for all } x, y \in \mathbb{R}^{N}, r \in \mathbb{R}, p \in \mathbb{R}^{N} ; \\
\\
\exists C>0 \quad \\
\quad \begin{array}{l}
\text { such that }|H(x, r, p)-H(x, r, q)| \leq C|p-q| \\
\\
\\
\text { for all } x \in \mathbb{R}^{N}, r \in \mathbb{R}, p, q \in \mathbb{R}^{N} .
\end{array}
\end{gather*}
$$

Remark: under the assumptions (H1)-(H2)-(H4'), we can prove as in Theorem 1 of the lecture that (7) has a unique viscosity solution u with linear growth.
IV.4. Prove that V is Lipschitz continuous if $C_{b}<1$.

Now we assume that:

$$
b(x, \alpha)=B(x)+\alpha
$$

with B bounded Lipschitz continuous (with Lispchitz constant $C_{B}<1$) and $B(x)=$ $-B(-x), B(0)=0$;

$$
f(x, \alpha)=|x|+|\alpha|^{2} .
$$

IV.5. Compute precisely H given by (8).
IV.6. Show that $V(0)=0$ and prove by two different methods that $V(x)=V(-x)$ for all $x \in \mathbb{R}^{N}$.
[1st method: you can start to prove that $J(x, \alpha(\cdot))=J(-x,-\alpha(\cdot))$; second method: what is the equation satisfied by $V(-x)$? and use uniqueness of the solution with linear growth to (7).]

CORRECTION of the exam of November 2011

Exercise I.

I.1. The volume of the can of Figure 1 is

$$
V(x, y)=\pi x^{2} y
$$

The volume of the metal used to build the can is

It follows that, to find optimal cans, we have to maximize $f(x, y)=x^{2} y$ (maximizing $x^{2} y$ or $\pi x^{2} y$ is the same) under the contraint $g(x, y)=2 x^{2}+x y-C=0$ where the constant $C=\alpha /(2 \pi e)$. Note that both f and g are C^{1} functions.
I.2. We want to prove that there exists a solution to the problem. Let

$$
A=\left\{(x, y) \in \mathbb{R}^{2}: x \geq 0, y \geq 0 \text { et } 2 x^{2}+x y=C\right\}
$$

The set A is not a compact subset of \mathbb{R}^{2} but setting $a=x$ et $b=x y$ and

$$
\tilde{A}=\left\{(a, b) \in \mathbb{R}^{2}: a \geq 0, b \geq 0 \text { et } 2 a^{2}+b=C\right\}
$$

we obtain a compact subset. Since $f(x, y)=a b$, the initial problem is equivalent to solve

$$
\sup _{(a, b) \in \tilde{A}} a b .
$$

By compactness and continuity, there exists at least one solution $(\bar{a}, \bar{b}) \in \tilde{A}$ to the problem. Note $\bar{a}, \bar{b}>0$ (otherwise $V=0$ which would be a contradiction) It follows that there exists a solution (\bar{x}, \bar{y}) to the original problem with $\bar{x}=\bar{a}$ and $\bar{y}=\bar{b} / \bar{x}$.
I.3. We look for necessary conditions of optimality. Since f and g are C^{1}, if (\bar{x}, \bar{y}) is a solution, then $g(\bar{x}, \bar{y})=0$ and there exists a Lagrange multiplier $\lambda \in \mathbb{R}$ such that $\operatorname{Df}(\bar{x}, \bar{y})+\lambda D g(\bar{x}, \bar{y})=0$. It leads to the system

$$
\left\{\begin{array}{clc}
2 \bar{x}^{2}+\bar{x} \bar{y} & =C \\
2 \bar{x} \bar{y}+\lambda(4 \bar{x}+\bar{y}) & =0 \\
\bar{x}^{2}+\lambda \bar{x} & =0
\end{array}\right.
$$

The first equation shows that $\bar{x}>0$. It follows from the last equation that $\lambda=-\bar{x}$. Then we can solve the system finding a unique solution

$$
\bar{x}=\frac{1}{2} \sqrt{\frac{\alpha}{3 \pi e}} \quad \text { et } \quad \bar{y}=4 \bar{x}=2 \sqrt{\frac{\alpha}{3 \pi e}}=\sqrt{\frac{\alpha}{\pi e}}\left(\sqrt{3}-\frac{1}{\sqrt{3}}\right) .
$$

The necessary conditions give a unique candidate for our problem and, from I.2, we know that there exists a solution. We can conclude that (\bar{x}, \bar{y}) is the unique solution to our problem, $V=\frac{1}{6 \sqrt{3 \pi}}\left(\frac{\alpha}{e}\right)^{3 / 2}$.

Exercise II.

II.1. The function L^{ε} is C^{1} since $x \mapsto|x|^{2}+\varepsilon^{2}$ is C^{∞} and positive on \mathbb{R}^{N} when $\varepsilon>0$. For $\varepsilon=0, L^{0}=|x|+C t$ which is nonsmooth at $(x, t)=(0, t)$.
II.2. Since L^{ε} is C^{1}, we just have to compute that L^{ε} is a classical supersolution: for every $x \in \mathbb{R}^{N}, t>0$, we have

$$
\frac{\partial u}{\partial t}(x, t)-C|D u(x, t)|=C-C\left|\frac{x}{\left(|x|^{2}+\varepsilon^{2}\right)^{1 / 2}}\right| \geq 0
$$

II.3. Method 1 (stability). For every $(x, t) \in \mathbb{R}^{N} \times(0,+\infty)$,

$$
\left|L^{\varepsilon}(x, t)-L^{0}(x, t)\right| \leq \frac{\varepsilon^{2}}{\left(|x|^{2}+\varepsilon^{2}\right)^{1 / 2}+|x|}+\varepsilon \leq 2 \varepsilon
$$

Therefore, L^{ε} converges uniformly to L^{0} in $\mathbb{R}^{N} \times(0,+\infty)$. By stability, since L^{ε} is a supersolution, the limit L^{0} is still a subsolution of (1).
Method 2 (direct computation). We check directly that L^{0} is a supersolution by using the definition with subdifferentials at the points where L^{0} is not differentiable. The function L^{0} is C^{1} on $\left(\mathbb{R}^{N}-\{0\}\right) \times(0,+\infty)$. On this set,

$$
\frac{\partial u}{\partial t}(x, t)-C|D u(x, t)|=C-C\left|\frac{x}{|x|}\right|=C-C=0
$$

hence L^{0} is a (classical) solution (thus a viscosity supersolution). Let $(x, t)=(0, t)$. An easy computation shows that the subdifferential of L^{0} at $(0, t)$ is $D^{-} L^{0}(0, t)=\bar{B}(0,1) \times\{C\}$. For every $p=\left(p_{x}, p_{t}\right) \in D^{-} L^{0}(0, t)$, we have

$$
p_{t}-C\left|p_{x}\right|=C-C\left|p_{x}\right| \geq 0
$$

since $\left|p_{x}\right| \leq 1$. Therefore the viscosity inequality for supersolution holds on $\{0\} \times(0,+\infty)$. We can conclude that L^{0} is a supersolution everywhere.
II.4. On the set $\left(\mathbb{R}^{N}-\{0\}\right) \times(0,+\infty)$, we proved in II. 3 that L^{0} is a classical solution. At points $(x, t)=(0, t)$, the superdifferential $D^{+} L^{0}(0, t)$ is empty and therefore the viscosity condition for subsolution is automatically fulfilled. We conclude that L^{0} is a subsolution.
II.5. Suppose that, for $\varphi \in C^{1}\left(\mathbb{R}^{N} \times(0,+\infty)\right), \psi \circ L^{\varepsilon}-\varphi$ achieves a local minimum at some $(x, t) \in \mathbb{R}^{N} \times(0,+\infty)$ and that $\psi\left(L^{\varepsilon}(x, t)\right)=\varphi(x, t)$. It follows that for (y, s) close enough to (x, t), we have

$$
\psi\left(L^{\varepsilon}(y, s)\right) \geq \varphi(y, s) \quad \Longrightarrow \quad L^{\varepsilon}(y, s) \geq \psi^{-1}(\varphi(y, s))
$$

where ψ^{-1} is the increasing inverse function of the C^{1} increasing function ψ. Note that ψ^{-1} is still C^{1} with $\left(\psi^{-1}\right)^{\prime}(r)=\left(\psi^{\prime}\left(\psi^{-1}(r)\right)\right)^{-1}$. Therefore $L^{\varepsilon}-\psi^{-1} \circ \varphi$ achieves a local minimum at (x, t). Writing that L^{ε} is a supersolution, we have, setting $r=\varphi(x, t)$,

$$
\left(\psi^{-1}\right)^{\prime}(r) \frac{\partial \varphi}{\partial t}(x, t)-C\left|\left(\psi^{-1}\right)^{\prime}(r) D \varphi(x, t)\right| \geq 0
$$

Dividing the inequality by $\left(\psi^{-1}\right)^{\prime}(r)>0$, we obtain the viscosity inequality proving that $\psi \circ L^{\varepsilon}$ is a supersolution at (x, t).
II.6. The result is still true and can be obtained by approximation. Given a nondecreasing function ψ, we find a sequence of C^{1} increasing functions $\left(\psi_{n}\right)_{n}$ converging locally uniformly in \mathbb{R} to ψ. For instance on may take $\psi_{n}(r)=\psi * \rho_{n}(r)+\frac{1}{n} \arctan (r)$ (the convolution with a standard C^{∞} mollifier ρ_{n} gives a C^{∞} function which is still nondecreasing. The term with arctan ensures that ψ_{n} is increasing). By II.5, $\psi_{n}\left(L^{\varepsilon}\right)$ is a supersolution and $\psi_{n}\left(L^{\varepsilon}\right)$ converges locally uniformly to $\psi\left(L^{\varepsilon}\right)$. We conclude by stability.

Exercise III.

III.1. A classical example of coercive Hamiltonian is $H(x, u, D u)=\lambda u+c(x)|D u|^{m}$ with $\lambda, m>0$ and $c \in C\left(\mathbb{R}^{N} ; \mathbb{R}\right)$ such that $c(x) \geq c_{0}>0$ for all $x \in \mathbb{R}^{N}$.
III.2. Let $R>0$. Since $H(x, r, p) \rightarrow+\infty$ when $|p| \rightarrow+\infty$ uniformly with respect to $x \in \mathbb{R}^{N}, r \in[-R, R]$, by the very definition, there exists $C>0$ such that, for all $x \in \mathbb{R}^{N}, r \in[-R, R]$ and $p \in \mathbb{R}^{N}$ such that $|p| \geq C$, we have $H(x, r, p)>0$. It is equivalent to the result.
III.3. For all $y \in \mathbb{R}^{N}$,

$$
\begin{equation*}
u(y)-K|y-x| \leq\|u\|_{\infty}-K|y-x| \leq\|u\|_{\infty} \tag{10}
\end{equation*}
$$

Therefore the supremum is finite. The function $y \mapsto u(y)-K|y-x|$ is continuous on \mathbb{R}^{N} and converges to $-\infty$ as $|y| \rightarrow+\infty$ by (10). This implies that the supremum is achieved at some $\bar{y} \in \mathbb{R}^{N}$.
III.4. Assume that the supremum is achieved at $\bar{y} \neq x$. It means that $u-\varphi_{x, K}$ has a local maximum at \bar{y}. Moreover, since $|\bar{y}-x| \neq 0, \varphi_{x, K}$ is C^{1} in a neighborhood of \bar{y}. So we can use $\varphi_{x, K}$ as a test-function for the subsolution u at \bar{y} and we obtain

$$
H\left(\bar{y}, u(\bar{y}), D \varphi_{x, K}(\bar{y})\right)=H\left(\bar{y}, u(\bar{y}), K \frac{\bar{y}-x}{|\bar{y}-x|}\right) \leq 0
$$

From III.2, it follows that

$$
\left|K \frac{\bar{y}-x}{|\bar{y}-x|}\right|=K \leq C\left(H,\|u\|_{\infty}\right)
$$

If we choose at the beginning $K \geq \bar{K}>C\left(H,\|u\|_{\infty}\right)$, we obtain a contradiction. Therefore we cannot have $\bar{y} \neq x$ if K is large enough.
III.5. Choosing $K=\bar{K}>C\left(H,\|u\|_{\infty}\right)$, necessarily $\bar{y}=x$ and $\sup _{y \in \mathbb{R}^{N}}\{u(y)-\bar{K}|y-x|\}=u(x)$. It follows that, for every $y \in \mathbb{R}^{N}, u(y)-u(x) \leq \bar{K}|y-x|$. Since this formula holds for any x (with the same \bar{K} since it is independent of x), this proves that u is \bar{K}-Lipschitz continuous.

Exercise IV.

IV.1. From (6), we have $|f(x, \alpha)| \leq|f(0, \alpha)|+C_{f}|x|$. This implies that (9) holds true with $C_{1}=\max _{\bar{B}(0,1)}|f(0, \alpha)|$ (recall that f is continuous) and $C_{2}=C_{f}$.
IV.2. Since b is bounded by C_{b}, for every control $\alpha(\cdot)$, we have

$$
\left|X_{x}(t)\right|-|x| \leq\left|X_{x}(t)-x\right|=\left|\int_{0}^{t} \dot{X}_{x}(s) d s\right| \leq \int_{0}^{t}\left|\dot{X}_{x}(s)\right| d s=\int_{0}^{t} \mid b\left(X_{x}(s), \alpha(s) \mid d s \leq C_{b} t .\right.
$$

Using IV. 1 and the previous computation, it follows that

$$
\begin{aligned}
V(x) & =\inf _{\alpha(\cdot)} \int_{0}^{+\infty} e^{-s} f\left(X_{x}(s), \alpha(s)\right) d s \leq \inf _{\alpha(\cdot)} \int_{0}^{+\infty} e^{-s}\left(C_{1}+C_{f}\left|X_{x}(s)\right|\right) d s \\
& \leq \int_{0}^{+\infty} e^{-s}\left(C_{1}+C_{f}|x|+C_{f} C_{b} s\right) d s=C_{1}+C_{f} C_{b}+C_{f}|x|
\end{aligned}
$$

which proves that V has linear growth.
IV.3. We recall that

$$
H(x, r, p)=r+\sup _{\alpha}\{-\langle b(x, \alpha), p\rangle-f(x, \alpha)\}
$$

It follows that (H1) is obvious with $\gamma=1>0$. Using "sup - sup $\leq \sup$ ", we have

$$
\begin{aligned}
H(x, r, p)-H(y, r, q) & \leq \sup _{\alpha}\{\langle b(y, \alpha), q\rangle-\langle b(x, \alpha), p\rangle+f(y, \alpha)-f(x, \alpha)\} \\
& \leq \sup _{\alpha}\left\{\langle b(y, \alpha), q-p\rangle+\langle b(y, \alpha)-b(x, \alpha), p\rangle+C_{f}|x-y|\right\} \\
& \leq \sup _{\alpha}\left\{C_{b}|q-p|+C_{b}|x-y||p|+C_{f}|x-y|\right\} \\
& \leq \max _{x}\left\{C_{b}, C_{f}\right\}(1+|p|)|x-y|+C_{b}|p-q|
\end{aligned}
$$

which proves (H2) and (H3).
IV.4. From Gronwall Inequality, if X_{x} and X_{y} are two trajectories with same control $\alpha(\cdot)$ starting from x and y respectively, we have

$$
\left|X_{x}(t)-X_{y}(t)\right| \leq e^{C_{b} t}|x-y|
$$

Using "inf - inf \leq sup," we get

$$
\begin{aligned}
V(x)-V(y) & \leq \sup _{\alpha(\cdot)} \int_{0}^{+\infty} e^{-s}\left[f\left(X_{x}(s), \alpha(s)\right)-f\left(X_{y}(s), \alpha(s)\right)\right] d s \\
& \leq \int_{0}^{+\infty} e^{-s} C_{f}\left|X_{x}(s)-X_{y}(s)\right| d s \\
& \leq C_{f} \int_{0}^{+\infty} e^{-\left(1-C_{b}\right) s}|x-y| d s=\frac{C_{f}}{1-C_{b}}|x-y|
\end{aligned}
$$

which gives the conclusion.
IV.5. By Formula (8), solving an easy problem of optimization, we obtain

$$
H(x, u, p)=\sup _{|\alpha| \leq 1}\left\{-\langle B(x)+\alpha, p\rangle+u-|x|-|\alpha|^{2}\right\}= \begin{cases}u+\frac{|p|^{2}}{4}-\langle B(x), p\rangle-|x| & \text { if }|p| \leq 2 \\ u+|p|-1-\langle B(x), p\rangle-|x| & \text { if }|p| \geq 2\end{cases}
$$

IV.6. Since the running cost $f \geq 0$, we have $V \geq 0$. But $V(0) \leq J(0,0)=0$. It follows $V(0)=0$.

Let $X_{x, \alpha}$ be the trajectory solution to $\dot{X}_{x, \alpha}=B\left(X_{x, \alpha}\right)+\alpha(t)$ starting from x and $X_{-x,-\alpha}$ be the trajectory solution
 So $-X_{-x,-\alpha}$ satisfies the same equation as $X_{x, \alpha}$. By uniqueness $X_{x, \alpha}=-X_{-x,-\alpha}$. Using that $f(x, \alpha)=f(-x,-\alpha)$, it follows $J(x, \alpha)=J(-x,-\alpha)$. Moreover $\left\{\alpha(\cdot): \alpha \in L^{\infty}([0,+\infty) ; \bar{B}(0,1))\right\}=\left\{-\alpha(\cdot): \alpha \in L^{\infty}([0,+\infty) ; \bar{B}(0,1))\right\}$. We conclude

$$
V(x)=\inf _{\alpha(\cdot)} J(x, \alpha)=\inf _{\alpha(\cdot)} J(-x,-\alpha)=\inf _{\alpha(\cdot)} J(-x, \alpha)=V(-x)
$$

Another proof: we make the change of function $u(x)=V(-x), D u(x)=-D V(-x)$, in the Hamilton-Jacobi (7). Formally (it is not difficult to write everything rigorously), we have:

$$
0=H(-x, V(-x), D V(-x))=H(-x, u(x),-D u(x))=H(x, u(x), D u(x))
$$

since $H(x, u, p)=H(-x, u,-p)$ by IV.5. It follows that u is a viscosity solution of the same equation (7) as V and u, V have linear growth. By uniqueness, we obtain $u=V$ so $V(-x)=V(x)$.

