
Année universitaire 2025-2026
3GMA FISA

DEVOIR SURVEILLÉ Outils d’analyse pour l’ingénieur

Lundi 3 novembre 2025 — durée : 2h

**** Tous appareils électroniques interdits ****

Documents permis :
Toutes les notes personnelles manuscrites,

les énoncés des feuilles de TD, les polycopiés de cours et de rappel du module.

Tous autres documents, photocopies ou textes imprimés interdits.

Nom : Prénom :

Cochez directement vos réponses sur le sujet pages 2 et 3.

Il peut y avoir plusieurs bonnes réponses dans chacune des questions du QCM.

Toute réponse fausse sera comptée négativement.

1



Intégration et transformée de Fourier

1. Cocher les assertions correctes.

eit

t
∈L1([1,+∞[)

1

(1 + t2)1/4
∈L1(R)

ln(t)

t2
∈L1([1,+∞[)

sin(t)− t
t7/2

∈L1(]0, 1[)

eit

t
∈L2([1,+∞[)

1

(1 + t2)1/4
∈L2(R)

ln(t)

t2
∈L2([1,+∞[)

sin(t)− t
t7/2

∈L2(]0, 1[)

2. Pour t ∈ R, on définit l’intégrale à paramètre F (t) =

ˆ +∞

0

sin(xt)

x
e−xdx. Alors

F ′(t) = t

ˆ +∞

0

cos(xt)

x
e−xdx −

ˆ +∞

0

cos(xt)e−xdx

ˆ +∞

0

cos(xt)e−xdx n’existe pas

soit encore F ′(t) =
1

1− t2
− 1

1 + t2
1

1 + t2
it

1 + t2
n’existe pas

On en déduit F (t) =
1

2
ln(1− t2) −arctan(t) arctan(t)

i

2
ln(1 + t2)

sin(t)

t

3. En faisant un changement en polaires, on trouve que

ˆ
R2

dx dy

(1 + x2 + y2)2
vaut

0 1
π

2
−π π −2π 2π 4π 6π +∞

4. La transformée de Fourier de t e−t
2/2 vaut

n’existe pas (2π)3/2ξe−2π2ξ2 −i(2π)3/2ξe−2π2ξ2

−i(2π)3/2e−2π2ξ2 −i
(π

2

)3/2

ξe−π
2ξ2/2 i

(π
2

)3/2

ξe−π
2ξ2/2

5. Soit f(t) = 1[− 1
π
, 1
π

](t)− 1[− 1
2π
, 1
2π

](t), (on rappelle que 1A(t) est la fonction caractéristique de

l’ensemble A qui vaut 1 si t ∈ A et 0 si t 6∈ A).

Tracer l’allure de la fonction f dans le cadre ci-contre :
t

La transformée de Fourier f̂(ξ) de f vaut

n’existe pas
2

πξ
cos(

ξ

2
) sin(

3ξ

2
)

1

π
(2 sin(2ξ)− sin(ξ))

2

πξ
sin(

ξ

2
) cos(

3ξ

2
)

2

πξ
sin(

ξ

2
) sin(

3ξ

2
)

2

πξ
cos(

ξ

2
) cos(

3ξ

2
)

Quelle est l’allure de f̂(ξ) ? elle n’existe pas
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Analyse complexe

6. On considère le logarithme complexe principal Log (z) sur C \ R− (le plan complexe fendu
privé du demi-axe des réels négatifs) en choisissant l’Argument principal de z dans ]− π, π[.

Pour k = 0, 1, 2, 3, 4, 5, on définit zk = ei
2kπ
6 .

Positionner les zk sur le dessin ci-contre : 0 1

i

Cocher les assertions correctes

z5
k = 1 z6

k = 1 z8
k = 1 z12

k = 1

5∑
k=0

zk = −1
5∑

k=0

zk = 0
5∑

k=0

zk = 1
5∑

k=0

zk =
5∑

k=0

zk

Log(z5) = i10π
6

Log(z5) = −i2π
6

z
1/2
4 = ei

4π
6 z

1/2
4 = e−i

2π
6

7. Soit h(z) =
+∞∑
n=1

z2n

n
.

Le rayon de convergence R de la série entière h est

R = n’existe pas 0
1

2
1 2

√
2 +∞

Le calcul de la somme donne

h(z) =
2z

(1− z2)2
0 Log(1− z2) −Log(1− z2) Log(1 + z2)

1

1− z2

8. Soit f(z) =
z + 1

z + 3
. Alors

f ∈ H(C) f ∈ H(C \ {3}) f ∈ H(C \ {−3}) f ∈ H(C \ {0}) f ∈ H(C \ {3,−1})

Le développement en série entière de f en z = 0 s’écrit

n’existe pas
+∞∑
n=0

2(−1)n+1

3n+1
zn

1

3
+

+∞∑
n=1

2(−1)n

3n+1
zn

1

3
+

+∞∑
n=1

2(−1)n+1

3n+1
zn

1

3
+

+∞∑
n=1

2(−1)n+1

3n
zn

+∞∑
n=1

2(−1)n+1

3n
zn

avec un rayon de convergence

R = n’existe pas 0
1

3
1 2 3 +∞
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Correction du DS de novembre 2025 – 3GMA FISA “Outils d’analyse pour l’ingénieur”

1.

∣∣∣∣ eitt
∣∣∣∣ =

1

t
∈ L2([1,+∞[) \ L1([1,+∞[) donc eit

t
est dans L2([1,+∞[) mais pas dans L1([1,+∞[).

1
(1+t2)1/4

est continue, positive et paire sur R. Il suffit d’étudier l’intégrabilité en +∞. Mais
1

(1 + t2)1/4
∼

t→+∞

1
√
t

et cette dernière

fonction n’est ni intégrable, ni de carré intégrable en +∞. Donc
1

(1 + t2)1/4
n’est ni dans L1(R) ni dans L2(R).

ln(t)

t2
est continue et positive sur [1,+∞[, il suffit d’étudier l’intégrabilité en +∞. Comme t3/2

ln(t)

t2
→

t→+∞
0 par croissance com-

parées, on obtient que, pour t ≥ 1 assez grand, 0 ≤
ln(t)

t2
≤

1

t3/2
∈ L1([1,+∞[) ∩ L2([1,+∞[). Il suit

ln(t)

t2
∈ L1([1,+∞[) ∩

L2([1,+∞[).∣∣∣∣ sin(t)− t
t7/2

∣∣∣∣ est continue sur ]0, 1]. En effectuant un développement limité de sin(t) en 0, on obtient

∣∣∣∣ sin(t)− t
t7/2

∣∣∣∣ =
1
√
t
+o

(
1
√
t

)
∼
t→0

1
√
t
∈

L1(]0, 1[) \ L2(]0, 1[). D’où

∣∣∣∣ sin(t)− t
t7/2

∣∣∣∣ ∈ L1(]0, 1[) \ L2(]0, 1[).

2. La fonction F est une intégrale à paramètre F (t) =

ˆ +∞

0
f(t, x)dx avec f(t, x) =

sin(xt)

x
e−x. D’après le théorème de dérivation

sous le signe intégral (exercice : les hypothèses sont satisfaites), on obtient : F ′(t) =

ˆ +∞

0

∂f

∂t
(t, x)dx =

ˆ +∞

0
cos(xt)e−xdx (1ère

case à cocher).

La valeur de cette intégrale est la partie réelle de

ˆ +∞

0
e(it−1)xdx =

1

1− it
=

1 + it

1 + t2
, soit F ′(t) =

1

1 + t2
(2ème case à cocher).

En intégrant la valeur de F ′(t) obtenue ci-dessus, on trouve F (t) = F (0) + arctan(t). Mais F (0) = 0 de façon évidente donc
F (t) = arctan(t) (3ème case à cocher).

3. Par un changement de variables en coordonnées polaires et le théorème de Fubini, on aˆ
R2

dx dy

(1 + x2 + y2)2
=

ˆ 2π

0
dθ

ˆ +∞

0

r

(1 + r2)2
dr = 2π

[
−

1

2
(1 + r2)−1

]+∞
0

= π.

4. On a ̂te−t2/2 =
1

−2πi
ê−t2/2

′
(ξ). Or ê−t2/2 =

√
2πe−2π2ξ2 et donc ê−t2/2

′
= −4π2ξ

√
2πe−2π2ξ2 . Finalement ̂te−t2/2 =

−i(2π)3/2ξ e−2π2ξ2 .

5. L’allure de la fonction f est celle de 2 créneaux symétriques par rapport à l’axe des ordonnées (cf. Figure du milieu sur la dernière
ligne).
D’après le formulaire sur les transformées de Fourier et le formulaire trigonométrique,

f̂(ξ) = ̂1[− 1
π
, 1
π
](ξ)− ̂1[− 1

2π
, 1
2π

](ξ) =
2

π
sinc(2ξ)−

1

π
sinc(ξ) =

1

πξ
(sin(2ξ)− sin(ξ)) =

2

πξ
sin(

ξ

2
) cos(

3ξ

2
).

L’allure de f̂ est celle de l’avant-dernière figure.

6. Les zk sont les racines 6-èmes de l’unité, c’est-à-dire l’ensemble des solutions de z6 = 1. On a donc z6k = 1 et z12k = (z6k)2 = 1

(2 cases à cocher). La somme des racines est nulle :

5∑
k=0

zk =

5∑
k=0

(ei
2π
6 )k =

5∑
k=0

zk1 =
1− z61
1− z1

= 0 (1 case à cocher). Comme

z0 = 1 = z0, z1 = z5, z2 = z4 et z3 = −1 = z3, on trouve

5∑
k=0

zk =

5∑
k=0

zk = 0 (1 case à cocher). En remarquant que

Arg(z4) = Arg(ei
8π
6 ) = − 4π

6
et Arg(z5) = Arg(ei

10π
6 ) = − 2π

6
(Arg dénotant l’argument principal dans [−π, π[), on trouve

facilement Log(z5) = −i 2π
6

et z
1/2
4 = e

1
2
Log(z4) = e−i

2π
6 .

7. D’après le critère de d’Alembert, on trouve facilement que le rayon de convergence de

+∞∑
n=1

Zn

n
est 1. Donc, en posant Z = z2, on

a que cette série converge absolument si |Z| = |z|2 < 1, c’est-à-dire si |z| < 1, et diverge grossièrement si |Z| = |z|2 > 1, c’est-à-dire
quand |z| > 1. Par le lemme d’Abel, on a donc que le rayon de convergence de h est R = 1. Puis, pour tout z ∈ D(0, 1), on a :

h(z) =

+∞∑
n=1

z2n

n
= −

+∞∑
n=1

(−1)n−1

n
(−z2)n = −Log(1− z2).

8. f(z) =
z + 1

z + 3
est une fraction rationnelle, elle est holomorphe sur C privé de l’ensemble des points où z+ 3 s’annule, c’est-à-dire

que f ∈ H(C \ {−3}). En particulier, f est holomorphe en z = 0 et développable en série entière en ce point :

f(z) =
z + 1

z + 3
= (z + 1)

1

3

1

1 + z
3

= (z + 1)

∞∑
n=0

(−1)n

3n+1
zn =

∞∑
n=0

(−1)n

3n+1
zn+1 +

∞∑
n=0

(−1)n

3n+1
zn =

∞∑
n=1

(−1)n+1

3n
zn +

∞∑
n=0

(−1)n

3n+1
zn =

1

3
+
∞∑
n=1

2(−1)n+1

3n+1
zn. Enfin le rayon de convergence de la série obtenue est R = 3 : on peut le voir avec le critère de d’Alembert

où comme le rayon du plus grand disque centré en 0 et contenu dans C \ {−3}.
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