

Exercices à travailler en autonomie

SERIES DE FOURIER

Exercice 1 Soit f la fonction périodique, de période 2, définie par $f(t) = t - t^3$ pour $t \in]-1,1]$.

- 1. Tracer le graphe de f sur [-3,3].
- 2. Calculer les coefficients de Fourier de f.
- 3. Étudier la convergence de la série de Fourier de f.
- 4. Que déduire du théorème de Parseval?

Exercice 2 Soit f la fonction 2π -périodique définie par $f(t) = (t - \pi)^2$ pour $t \in [0, 2\pi[$. On admet que ses coefficients de Fourier $(a_n)_{n\geq 0}$ sont donnés par : $a_o = \frac{2\pi^2}{3}$, $\forall n \geq 1$, $a_n = \frac{4}{n^2}$. (Vous pouvez vérifier ces calculs)

- 1. Pour $t \in [-\pi, 0]$, prouver que f(t) = f(-t), et justifier que $\forall n \ge 1, b_n = 0$.
- 2. Calculer la somme $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2}$ en justifiant votre réponse.
- 3. Calculer la somme $\sum_{n=1}^{+\infty} \frac{1}{n^4}$ en justifiant votre réponse.

Exercice 3 Soit f la fonction $\frac{\pi}{2}$ -périodique et impaire, définie par $f(t) = 1 - \cos(t)$ pour $t \in [0, \frac{\pi}{4}]$. Calculer les coefficients de Fourier de f.

Exercice 4 Soit f la fonction 2π -périodique définie par $f(t)=t^2$ pour $t\in [-\pi,\pi]$. On admet que ses coefficients de Fourier sont donnés par : $b_n=0$, $a_0=\frac{\pi^2}{3}$, et, pour tout $n\in \mathbb{N}^*$, $a_n=\frac{4(-1)^n}{n^2}$.

- 1. Calculer la somme $\sum_{n=0}^{\infty} \frac{(-1)^n}{n^2}$ en justifiant votre réponse.
- 2. En utilisant le théorème de Parseval, calculer la somme $\sum_{n=1}^{\infty} \frac{1}{n^4}$.

- 1. Tracer la fonction f.
- 2. La fonction f est-elle égale à sa série de Fourier? Justifiez.
- 3. Déterminer la série de Fourier de f qu'on notera S(f)(t).
- 4. Calculer

(a)
$$\sum_{p=0}^{+\infty} \frac{1}{(2p+1)^2}$$

(b)
$$\sum_{p=0}^{+\infty} \frac{1}{(2p+1)^4}$$

Exercice 6 Soit f la fonction définie $f(t) = |\sin(2t)|$ pour tout $t \in \mathbb{R}$.

- 1. Préciser la parité de f. Montrer que f est périodique de période $\frac{\pi}{2}$ et représenter f sur $[-\pi, 2\pi]$.
- 2. Calculer les coefficients de Fourier de f et étudier la convergence de la série de Fourier. Indication : retrouver et utiliser la formule $\sin(a)\cos(b) = \frac{1}{2}(\cdots)$
- 3. Calcular $\sum_{n=1}^{+\infty} \frac{1}{4n^2 1)^2}$.

FONCTIONS DE DEUX VARIABLES: LIMITES - CONTINUITE

Exercice 7 Pour $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$, on pose $f(x,y) = \sin\left(\frac{1}{x^2}\right) - \cos\left(\frac{1}{y^2}\right)$.

- 1. Donner une suite $(a_n, b_n)_n$ telle que $(a_n, b_n) \to (0, 0)$ quand $n \to +\infty$ et telle que, pour tout $n \in \mathbb{N}^*$, $f(a_n, b_n) = -1$.
- 2. De même, donner une suite $(c_n, d_n)_n$ telle que $(c_n, d_n) \to (0, 0)$ quand $n \to +\infty$ et telle que, pour tout $n \in \mathbb{N}^*$, $f(c_n, d_n) = 1$.
- 3. Que dire de l'existence de la limite de f(x,y) quand $(x,y) \rightarrow (0,0)$?

Exercice 8 Pour $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$, on pose $f(x,y) = \frac{x+y^2}{x^2+y}$.

- 1. Trouver une suite $(a_n, b_n)_n$ telle que $\lim_n (a_n, b_n) = (0, 0)$ et telle que $\lim_n f(a_n, b_n) = 0$.
- 2. Trouver une suite $(c_n, d_n)_n$ telle que $\lim_n (c_n, d_n) = (0, 0)$ et telle que $\lim_n f(c_n, d_n) = +\infty$.
- 3. Que dire de l'existence de la limite de f(x,y) quand $(x,y) \rightarrow (0,0)$?

Exercice 9 Soit f la fonction définie sur \mathbb{R}^2 par $f(x,y) = \begin{cases} \frac{xy(x^2-y^2)}{x^2+y^2} & si \quad (x,y) \neq (0,0) \\ 0 & si \quad (x,y) = (0,0) \end{cases}$ La fonction f est-elle continue sur \mathbb{R}^2 ?

Exercice 10 Soit
$$f$$
 la fonction définie par $f(x,y) = \begin{cases} \frac{\ln(1+xy)}{x^2+y^2} & si \quad (x,y) \neq (0,0) \\ 0 & si \quad (x,y) = (0,0) \end{cases}$

1. Tracer l'ensemble de définition de f.

2. La fonction f est-elle continue sur son ensemble de définition?

DERIVES PARTIELLES

Exercice 11 Calculer les dérivées partielles d'ordre 1 et 2 de $f(x,y) = x^2 + 3xy - y^2 - 4x + 2y$.

Exercice 12 Soit $f(t, u, v) = u^3 + \sin(vt)$. Calculer $\frac{\partial f}{\partial t}$, $\frac{\partial f}{\partial u}$, et $\frac{\partial f}{\partial v}$. Vérifier par le calcul que $\frac{\partial^2 f}{\partial u \partial v} = \frac{\partial^2 f}{\partial v \partial u}$.

Exercice 13 Soit $f(x,y) = x^2 \ln(xy)$. Déterminer l'équation du plan tangent à la surface représentative de f au point (1,2).

Exercice 14 Soit f la fonction définie sur \mathbb{R}^2 par $f(x,y) = \frac{\ln(y+x^2)}{\ln(y-x)}$.

- 1. Représenter dans un repère cartésien le domaine de définition de f.
- 2. Représenter sur le même graphique la ligne de niveau 2 de f.
- 3. Donner l'équation du plan tangent à la surface représentative de f au point (0,e).

Exercice 15 Soit $f: \mathbb{R}^2 \to \mathbb{R}$ défini par $f(x,y) = xy^2$, soient $x(t) = e^t$, $y(t) = \ln(2t)$ et posons F(t) = f(x(t), y(t)). Calculer F'(t) et F''(t) de 2 manières différentes :

- 1. en calculant F(t) puis en dérivant par rapport à t.
- 2. en calculant les dérivés partielles premières et secondes de f et en utilisant la formule $F'(t) = x'(t) \frac{\partial f}{\partial x} \cdots$.

Exercice 16 Soit $F(x, y) = f(x + 2y, x^2 - y)$ avec $f(X, Y) = e^X \cdot Y^2$.

- 1. Donner l'expression de F(x,y) puis calculer les dérivées partielles $\frac{\partial F}{\partial x}(x,y)$ et $\frac{\partial F}{\partial x}(x,y)$
- 2. Calculer $\frac{\partial f}{\partial X}(x,y)$ et $\frac{\partial f}{\partial Y}(x,y)$ puis en utilisant la formule de la dérivée d'une composée, retrouver le résultat de la question 1.

Exercice 17 Soit $(x,y) \mapsto f(x,y)$ une fonction de classe C^1 de \mathbb{R}^2 dans \mathbb{R} . Soit $(u,v) \mapsto g(u,v)$ la fonction de \mathbb{R}^2 dans \mathbb{R} définie par : $g(u,v) := f(e^{u^2+v},\sin(uv^2))$. Calculer les dérivées partielles $\frac{\partial g}{\partial u}(u,v)$ et $\frac{\partial g}{\partial v}(u,v)$ en fonction des dérivées partielles de f.

EQUATIONS AUX DERIVES PARTIELLES

Exercice 18 Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe C^1 . On effectue le changement de variable $x = \frac{u+v}{2}$ et $y = \frac{u-v}{2}$ de sorte que f(x,y) = F(u,v).

1. Exprimer les dérivés partielles de F en fonction de celles de f.

2. En déduire les solutions de l'EDP :

$$\frac{\partial f}{\partial x}(x,y) + \frac{\partial f}{\partial y}(x,y) = 2.$$

Exercice 19 En utilisant le changement de variable : u = x + y et v = 3x + y, trouver les solutions f de classe C^2 de $\frac{\partial^2 f}{\partial x^2}(x,y) - 4\frac{\partial^2 f}{\partial x \partial y}(x,y) + 3\frac{\partial^2 f}{\partial y^2}(x,y) = 0$, $\forall (x,y) \in \mathbb{R}^2$.

RECHERCHE D'EXTREMA

Exercice 20 Déterminer les extrema locaux de $f(x,y) = x^3 + y^3 - 3xy$.

Exercice 21 Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par $f(x,y) = x^4 + y^4 - 4xy$. Déterminer les points critiques de f et préciser leur nature (col, maximum local ou minimum local).

Exercice 22 Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par $f(x,y) = (x^2 + y^2)e^{-y}$. Déterminer les points critiques de f et préciser leur nature (col, maximum local ou minimum local).

Exercice 23 On considère sur \mathbb{R}^2 la fonction : $h(x,y) = x^2 + y^2 + 2 - 2xy$.

- 1. Etudier les extrema de h sur \mathbb{R}^2 .
- 2. Montrer directement que les points critiques de h sont des minimums globaux.

EXTREMA SOUS CONTRAINTE

Exercice 24 On considère sur \mathbb{R}^2 les fonctions : $f(x,y) = x^2 + y^2$ et g(x,y) = xy - 1. et le problème : (I) Minimiser f(x,y) sous la contrainte g(x,y) = 0.

- 1. Dessiner l'allure des lignes de niveaux de f et g sur le même dessin.
- 2. Sur ce même dessin, représenter graphiquement les solutions de (I).
- 3. Calculer les solutions de (I) à l'aide du Lagrangien $\mathcal{L}(x,y,\lambda) = f(x,y) \lambda g(x,y)$.

Exercice 25 On considère sur \mathbb{R}^2 les fonctions : $f(x,y) = x^2y^2$ et $h(x,y) = x^2 + y^2 - 1$. et le problème : (I) Maximiser f(x,y) sous la contrainte h(x,y) = 0..

- 1. Tracer sur un même dessin les lignes de niveaux $0, \frac{1}{4}$ et 1 de f et la ligne de niveau 0 de h.
- 2. Sur ce même dessin, représenter graphiquement les solutions de (I).
- 3. Calculer les solutions de (I) à l'aide du Lagrangien $\mathcal{L}(x,y,\lambda) = f(x,y) \lambda h(x,y)$.