Année universitaire 2023/24 2ème année **Analyse 3**

Liste 1: Intégrales généralisées

Département de Mathématiques

Exercice 1 Montrer que les intégrales $\int_2^\infty \frac{dx}{x+1}$ et $\int_2^\infty \frac{dx}{x-1}$ sont divergentes.

Que peut-on dire de l'intégrale $\int_2^{\infty} \left(\frac{1}{1+x} + \frac{1}{1-x} \right) dx$?

Exercice 2 Étudier la convergence des intégrales suivantes :

$$\int_{1}^{+\infty} \frac{dx}{x^{2}\sqrt{1+x}}, \qquad \int_{-1}^{0} \frac{dx}{x^{2}\sqrt{1+x}}, \qquad \int_{0}^{+\infty} \frac{\ln{(x+1)}}{x} dx, \qquad \int_{1}^{+\infty} \frac{\ln{x}}{x^{2}} dx.$$

Exercice 3 Étudier la convergence en fonction des paramètres

$$\int_0^1 \frac{dx}{x^\alpha \left(1-x\right)^\beta}, \qquad \int_1^{+\infty} \frac{a^x}{1+a^{2x}} dx, \quad a \text{ r\'eel} > 0, \qquad \int_0^{+\infty} e^{-tu} \sin u \ du, \qquad \int_\pi^{+\infty} \frac{\sin(t)}{t^\alpha} dt.$$

Exercice 4 Montrer la convergence et calculer les intégrales suivantes :

$$\int_{1}^{+\infty} \frac{dx}{x^{2}\sqrt{1+x}} \text{ (faire le changement } t = \sqrt{1+x}), \qquad \int_{1}^{+\infty} \left(\frac{1}{x} - \arctan\frac{1}{x}\right) dx,$$

$$\int_{0}^{1} \frac{\ln\left(1-x^{2}\right)}{x^{2}} dx, \qquad \int_{0}^{+\infty} e^{-t} t^{n} dt, \qquad \int_{-1}^{1} \frac{dx}{(2-x^{2})\sqrt{1-x^{2}}}.$$

Exercice 5 Soit $u_n = \sum_{k=2}^n \frac{1}{k^2}$.

- 1. Montrer que $u_n \leq \int_1^n \frac{dt}{t^2}$ en comparant $\frac{1}{k^2}$ et $\int_{k-1}^k \frac{dt}{t^2}$.
- 2. En déduire que la suite (u_n) est bornée puis convergente.

Soit f la fonction continue définie sur $\mathbb R$ de la façon suivante :

- pour tout entier $n \geq 2$, f(n) = n, $f\left(n \frac{1}{n^3}\right) = f\left(n + \frac{1}{n^3}\right) = 0$ et f est affine sur $\left[n \frac{1}{n^3}, n\right]$ et sur $\left[n, n + \frac{1}{n^3}\right]$,
- \bullet f est nulle ailleurs.
- 3. Donner l'allure du graphe de f.
- 4. Comparer $\int_0^{n+\frac{1}{n^3}} f(t) dt$ et u_n .
- 5. En déduire que $\int_{0}^{+\infty}f\left(t\right)dt$ converge bien que f soit non bornée.

Département de Mathématiques

Exercice 6 Étudier la convergence des séries suivantes dont on donne le terme général :

1.
$$\frac{\ln n}{2^n}$$
,

$$2. \qquad \frac{4n^2 - n + 5}{3n^5 + 2}$$

$$3. \qquad \frac{1}{n^2 \ln^2 n},$$

$$4. \qquad \frac{1}{\ln^2 n},$$

1.
$$\frac{\ln n}{2^n}$$
, 2. $\frac{4n^2 - n + 5}{3n^5 + 2}$, 3. $\frac{1}{n^2 \ln^2 n}$, 4. $\frac{1}{\ln^2 n}$, 5. $n\left(\cos\left(\frac{1}{n}\right) - 1\right)$, 6. $\frac{n!}{(2n)!}$, 7. $\frac{1}{n\cos^2 n}$, 8. $2^{-\sqrt{n}}$, 9. $\frac{(-1)^n \sin n}{n^2}$, 10. $\frac{(-1)^{n-1}}{n^2 \ln^2 n}$, 11. $\frac{(-1)^{n-1}}{\ln^2 n}$, 12. $\frac{(-1)^{n-1}}{n \ln n}$.

6.
$$\frac{n!}{(2n)!}$$
, $(-1)^{n-1}$

$$7. \qquad \frac{1}{n\cos^2 n},$$

8.
$$2^{-\sqrt{n}}$$
,

$$9. \quad \frac{(-1)^n \sin n}{n^2}$$

10.
$$\frac{(-1)^{n-1}}{n^2 \ln^2 n},$$

11.
$$\frac{(-1)^{n-1}}{\ln^2 n}$$

$$12. \quad \frac{(-1)^{n-1}}{n \ln n}$$

Exercice 7 Étudier la convergence des séries en fonction des paramètres

1.
$$a \ge 0, u_n = na^n,$$

2.
$$\alpha \in \mathbb{R}$$
, $u_n = n^{\alpha} \tan \frac{1}{n}$.

3.
$$a, b \ge 0$$
, $u_n = \frac{a^n}{n+b^n}$.

4.
$$\alpha, \beta$$
 réels, $u_n = \frac{1}{n^{\alpha} \ln^{\beta} n}$, série de Bertrand. On peut étudier d'abord le cas $\alpha = 1 + \varepsilon$ avec $\varepsilon > 0$ en comparant u_n à $v_n = \frac{1}{n^{1+\varepsilon/2}}$ pour n assez grand, puis $\alpha = 1 - \varepsilon$ avec une technique similaire, enfin $\alpha = 1$, en utilisant une comparaison série-intégrale.

Exercice 8 Démontrer que les séries suivantes convergent et calculer leur somme.

1.
$$\sum_{n=1}^{+\infty} \frac{2}{n(n+1)(n+2)}$$
 (Décomposer en éléments simples la fraction $\frac{2}{x(x+1)(x+2)}$).

2.
$$\sum_{n=0}^{+\infty} \frac{n+1}{3^n}$$
.

Exercice 9 On définit $u_n = \frac{(-1)^n}{\sqrt{n}}, v_n = \frac{(-1)^n}{\sqrt{n} + (-1)^n}, w_n = \frac{(-1)^n}{\sqrt{n} + (-1)^n}.$

1. Montrer que
$$\lim_{n\to+\infty} \frac{u_n}{v_n} = 1 = \lim_{n\to+\infty} \frac{u_n}{w_n}$$
,

2. Etudier la nature des séries $\sum u_n$, $\sum v_n$ et $\sum w_n$. Pour les deux dernières, on pourra commencer par l'étude de $\sum v_n - u_n$ et $\sum w_n - u_n$.

Exercice 10 On définit $r_n = \sum_{k=-\infty}^{+\infty} \frac{1}{k^2}$, reste de la série convergente $\sum_{k=-\infty}^{+\infty} \frac{1}{k^2}$.

- 1. En encadrant r_n par des intégrales de la fonction f définie par $f(x)=1/x^2$, montrer que la suite (nr_n) converge vers 1.
- 2. Après avoir remarqué et justifié que $\frac{1}{n} = \sum_{k=0}^{+\infty} \frac{1}{k} \frac{1}{k+1}$, montrer que $s_n = r_n 1/n$ est équivalent à $1/(2n^2)$ lorsque n tend vers $+\infty$. On pourra encadrer s_n par les intégrales d'une fonction bien choisie.
- 3. Déterminer a réel tel que $t_n = r_n 1/n 1/(2n^2)$ est équivalent à a/n^3 en $+\infty$.

Département de Mathématiques

Exercice 11 Déterminer le rayon de convergence des séries entières suivantes:

$$\sum_{n=1}^{+\infty} \frac{z^n}{n2^n}, \quad \sum_{n=0}^{+\infty} n! z^n, \quad \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1} z^n, \quad \sum_{n=1}^{+\infty} \frac{(n+1)^2}{\sin n + \sqrt{n}} z^n, \quad \sum_{n=0}^{+\infty} \frac{(n!)^k}{(kn)!} z^n \text{ où } k \in \mathbb{N}^*,$$

$$\sum_{n=0}^{+\infty} n^2 z^{3n}, \quad \sum_{n=0}^{+\infty} c_n z^n, \text{ où } c_n = \begin{cases} 2^n & \text{si } n \text{ pair} \\ 1/2^n & \text{si } n \text{ impair} \end{cases}$$

Exercice 12 Si $\sum_{n=0}^{+\infty} c_n (-4)^n$ converge et $\sum_{n=0}^{+\infty} c_n 6^n$ diverge quelles sont les natures des séries numériques :

$$\sum_{n=0}^{+\infty} c_n 2^n, \qquad \sum_{n=0}^{+\infty} c_n 4^n, \qquad \sum_{n=0}^{+\infty} c_n (-6)^n, \qquad \sum_{n=0}^{+\infty} c_n, \qquad \sum_{n=0}^{+\infty} c_n 8^n.$$

Exercice 13 Déterminer les développements en série entière des fonctions suivantes

$$\frac{1}{1+x^2}$$
, $\frac{1}{2+x}$, $\frac{1}{2+3x}$, $\ln(5+x)$,

puis

$$\frac{1}{(1-x)^2}$$
, $\frac{1}{(2+3x)^2}$, $\frac{1}{x^3-3x+2}$, $\frac{x^3}{(x-2)^2}$, $\arctan x$.

Exercice 14 Calculer les sommes suivantes :

$$\sum_{n=0}^{+\infty} \frac{1}{n!}, \qquad \sum_{n=2}^{+\infty} \frac{(-1)^n}{n!}, \qquad \sum_{n=4}^{+\infty} \frac{2^n}{n!}, \qquad \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{2^n n}.$$

Exercice 15 Domaine de convergence et somme des séries entières de variable réelle :

$$\sum_{n=0}^{+\infty}\sin(n\theta)x^n, \qquad \sum_{n=1}^{+\infty}\frac{1}{n}x^n, \qquad \sum_{n=2}^{+\infty}\frac{1}{n(n-1)}x^n, \qquad \sum_{n=0}^{+\infty}nx^n.$$

Exercice 16 Déterminer une solution développable en série entière de l'EDO y'' + xy' + y = 0 qui vérifie y(0) = 1 et y'(0) = 0. Même question avec une solution de xy'' + y' + y = 0 vérifiant y(0) = 1.

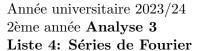
Pour aller plus loin...

Exercice 17 On considère l'équation : $(E) : x^2(x-1)y''(x) + x(x+1)y'(x) - y(x) = 0.$

- 1. Déterminer une solution de (E) développable en série entière $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ en précisant le rayon de convergence R.
- 2. Peut-on prolonger f en dehors de [-R, R] en une solution de (E).
- 3. Déterminer une autre solution de (E) sous la forme $g(x)=f(x)\varphi(x)$.
- 4. En déduire l'ensemble des solutions de (E) (espace vectoriel de dimension 2).

Exercice 18 Soit
$$f(x) = \frac{x}{1 - x - x^2} = \sum_{n=1}^{+\infty} f_n x^n$$
.

- 1. Montrer que (f_n) est la suite de Fibonacci (Merci de consulter la littérature ou Internet...).
- 2. Décomposer f en éléments simples et trouver une nouvelle expression de f_n .



Département de Mathématiques

Exercice 19 Dans chacun des cas suivants, tracer la fonction, qui est supposée T périodique, et donner son développement en série de Fourier (on précisera les points où f est égale à sa série de Fourier).

1.
$$T = 2\pi$$
, $f(t) = \begin{cases} -1 & \text{si } t \in]-\pi, 0[\\ 1 & \text{si } t \in]0, \pi[\end{cases}$; en déduire $\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1}$.

2.
$$T = 2\pi$$
, $f(t) = t$ si $t \in [-\pi, \pi[$.

3.
$$T = 2\pi$$
, $f(t) = |t| \text{ si } t \in]-\pi, \pi[$; en déduire $\sum_{p=0}^{+\infty} \frac{1}{(2p+1)^2}$, $\sum_{n=1}^{+\infty} \frac{1}{n^2}$, $\sum_{p=0}^{+\infty} \frac{1}{(2p+1)^4}$, $\sum_{n=1}^{+\infty} \frac{1}{n^4}$.

4.
$$T = 2\pi$$
, $f(t) = t^2$ si $t \in [-\pi, \pi[$; en déduire $\sum_{n=0}^{+\infty} \frac{(-1)^n}{n^2}$.

5.
$$T = 1$$
, $f(t) = \begin{cases} 0 & \text{si } t \in]-1/2, 0[\\ t & \text{si } t \in [0, 1/2] \end{cases}$.

6.
$$T = 5$$
, $f(t) = 4t$ pour $0 \le t < 5$; en déduire $\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1}$ et $\sum_{n=1}^{+\infty} \frac{1}{n^2}$.

Exercice 20 Soit g la fonction définie sur \mathbb{R} par $g(x) = \max(\sin x, 0)$.

- 1. Représenter le graphe de la fonction.
- 2. Déterminer ses coefficients de Fourier et étudier la convergence de la série de Fourier.

3. Calcular
$$\sum_{p=1}^{+\infty} \frac{1}{4p^2 - 1}$$
, et $\sum_{p=1}^{+\infty} \frac{(-1)^p}{4p^2 - 1}$.

4. Déterminer le développement en série de Fourier de f où $f(x) = |\sin x|$.

Exercice 21 Soit f une fonction de classe C^1 sur \mathbb{R} et de période T > 0. Comparer les coefficients de Fourier de f et ceux de f'.

Exercice 22 Soit
$$\varphi(z) = \frac{1}{2-z}$$

- 1. Pour $x \in \mathbb{R}$, déterminer la partie réelle de $\varphi(e^{ix})$.
- 2. Déterminer le développement en série entière de $\varphi(z), z \in \mathbb{C}$, en précisant le rayon de convergence.
- 3. En déduire, par identification, le développement en série de Fourier de la fonction f définie par $f(x) = \frac{2 \cos x}{5 4\cos x}$.

4. En déduire sans calcul
$$I = \int_{-\pi}^{\pi} \frac{2 - \cos x}{5 - 4 \cos x} dx$$
, avec peu de calculs, $J = \int_{-\pi}^{\pi} \left(\frac{2 - \cos x}{5 - 4 \cos x}\right)^2 dx$.

DEVOIR SURVEILLÉ de Novembre 2022 — ANALYSE 3 — durée : 1h30

Tous documents et matériel électronique interdits.

· 1	e) et
répondez aux questions :	

Faux

1.2.
$$I = \int_1^3 \frac{dx}{\sqrt{x-1}}$$
 CV Donner la valeur de I en cas de CV.

1.4. Valeurs de
$$\alpha \in \mathbb{R}$$
 pour que $K = \int_0^{+\infty} e^{\alpha t} dt$ converge? Donner alors la valeur de K .

1.5. Valeurs de
$$\beta \in \mathbb{R}$$
 pour que $\sum_{n=0}^{\infty} \frac{\binom{n-1}{n}}{n^{\beta}}$ CV (mais pas absolument) ? CV absolument ?

1.6.
$$S_1 = \sum_{n=1}^{+\infty} \frac{2 + (-1)^n}{n}$$
 CV Donner la valeur de S_1 en cas de CV.

1.7. $S_2 = \sum_{n=1}^{+\infty} \frac{5^n}{n!}$ CV Donner la valeur de S_2 en cas de CV.

1.7.
$$S_2 = \sum_{n=1}^{+\infty} \frac{5^n}{n!}$$
 CV Donner la valeur de S_2 en cas de CV.

1.8. Calculer le rayon de convergence et la somme de
$$f(x) = \sum_{n=0}^{\infty} (2^n - 3^n)x^n$$
.

1.9. Soit
$$\sum a_n x^n$$
 et $\sum b_n x^n$ deux séries entières de rayons de convergence respectifs R_a et R_b telles que $|a_n| \le |b_n|$ pour tout $n \in \mathbb{N}$. Alors : $\square R_a \le R_b$ $\square R_a \ge R_b$

1.10. Chercher la solution de l'EDO
$$(1+x)y' - \frac{1}{3}y = 0$$
, $y(0) = 1$, sous la forme $y(x) = \sum_{n=0}^{+\infty} a_n x^n$.

Exercice 2. On définit la série entière $f(x) = \sum_{n=1}^{+\infty} (-1)^n S_n x^n$ où $S_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$ est la somme partielle de la série harmonique. On admettra que $S_n \sim \lim_{n \to +\infty} \ln n$. Utiliser l'équivalent de S_n pour répondre aux questions 2.1, 2.2 et 2.3.

- **2.1.** Redémontrer que la série harmonique $\sum \frac{1}{n}$ diverge.
- **2.2.** Démontrer que la série numérique f(1) diverge grossièrement.
- **2.3.** Calculer le rayon de convergence R de f(x).
- **2.4.** Calculer (1+x)f(x) pour tout $x \in]-R, R[$. En déduire la valeur de f(x) pour tout $x \in]-R, R[$.

Exercice 3. On peut traiter chaque question sans avoir résolu la précédente.

3.1. Démontrer que
$$I = \int_0^{+\infty} \frac{dt}{1+t^4}$$
 converge.

3.2. Exprimer
$$\int_0^{+\infty} \frac{du}{\sqrt{u(1+u^2)}}$$
 en fonction de I au moyen du changement de variable $u=t^2$.

3.3. Déterminer les valeurs de
$$\alpha \in \mathbb{R}$$
 pour lesquelles $K_{\alpha} = \int_{0}^{+\infty} \frac{\arctan t}{t^{\alpha}} dt$ converge.

- **3.4.** Par une intégration par partie, démontrer que $K_{3/2} = 4I$.
- **3.5.** Question bonus : calculer la valeur numérique de I.

On pourra commencer par décomposer t^4+1 en produit de ses racines dans $\mathbb C$ puis regrouper les facteurs 2 à 2 conjugués pour obtenir une factorisation en un produit de 2 polynômes réels $P_1(t)$ et $P_2(t)$ de degré 2. Déterminer ensuite les coefficients $a, b, c, d \in \mathbb{R}$ de la décomposition en éléments simples $\frac{1}{t^4+1}$ $\frac{at+b}{P_1(t)} + \frac{ct+d}{P_2(t)}$ pour pouvoir calculer l'intégrale.