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1 Introduction

This text is the proceeding of a conference given at Muroran Institute of Technology,
July 30th 2004. I would like to thank Professors Y. Giga and M.-H. Sato for inviting
me in Japan and Professor Y. Kohsaka for giving me the opportunity to give a talk
at Muroran.

The goal of this talk is to give an introduction to the mean curvature motion
and the level-set approach. This presentation does not aim at being very precise
or/and exhaustive. I would like to give the main ideas in a simple way and to discuss
some special issues. I refer the reader who is interested in the subject to the surveys
[31, 30] of Y. Giga.

The talk is divided in four parts. At first, I will give a description of the mean
curvature and some examples and applications. Then, I will turn to the problem of
studying evolution by mean curvature and the need of defining a generalized notion
of motion. The third part is devoted to the explanation of one of the generalized
motion, namely the level-set approach. Finally, I will give an example of application
of the level-set approach in a theoretical context, namely the study of quasilinear
partial differential equations.

2 Preliminaries about mean curvature motion

Given a smooth hypersurface Γ in the Euclidean space R
N , the mean curvature κx

of Γ at the point x of Γ is the sum (or the average) of the principal curvatures at x.
More precisely, suppose (nx)x∈Γ be a unit normal vector field; then

κx = −div(nx) = trace(Ax) for all x ∈ Γ,

where div is the surface divergence and Ax is the matrix of the second fundamental
form at x.

The problem of motion by mean curvature of hypersurfaces or fronts of R
N is

the following: consider a given initial front Γ0 ⊂ R
N (for the moment, imagine that
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everything is smooth). We are interested in the time-evolution (Γt)t≥0 of Γ0 such
that, at every time t, the boundary point x ∈ Γt moves with a normal speed V Γt

x

equal to the mean curvature of the boundary, namely,

~V Γt

x = −div(nx,t) nx,t = −trace(Ax,t) nx,t for all x ∈ Γ, (1)

and V Γt

x = 〈~V Γt

x , nx,t〉 where 〈·, ·〉 is the classical Euclidean inner product. See Figure
1 for an illustration.

R
N

x

nx,t

Γt

~V Γt

x = −div(nx,t) nx,t

Figure 1: Motion of a front Γt by mean curvature.

The aim is to study Γt for all t ≥ 0.
We first give some basic examples for which the behaviour of the evolution by

mean curvature is well-known: circles in R
2 or more generally spheres in R

N remain
spheres and shrink into a point in finite time (see Figure 2). More generally, compact
convex bodies in R

N shrink into a point in finite time and they look asymptotically
like a sphere (see Figure 3). Compact subsets of R

N shrink into a point in finite
time (see an example of behaviour in Figure 4). We refer to Huisken [36] and Gage
and Hamilton [29] for proofs.

Γt

Γ0

Figure 2: Evolution by mean curvature of a sphere Γ0 of radius R0; Γt is a sphere
of radius R(t) =

√

R2
0 − 2(N − 1)t for 0 ≤ t ≤ R2

0/2(N − 1).
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Figure 3: Evolution by mean curvature of a convex body.
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Figure 4: Behaviour of the evolution by mean curvature of a compact set.

Mean curvature motion appears in various fields including differential geome-
try ([29], [36], [22], etc.), asymptotics of reaction diffusions equations (Allen-Cahn
equations, see [12], [15], [21], etc.), stochastic control and mathematical finance (see
Soner and Touzi [50], Buckdahn, Cardaliaguet and Quincampoix [13]). This kind
of motion has numerous applications in industrial transformation of metals, cristal
growth or image processing (see for instance Mullins [44], Alvarez, Guichard, Lions
and Morel [1] and references in Y. Giga [30]).

We choose here to describe an original and elegant problem in which mean cur-
vature arises. This problem comes from the works of Kohn and Serfaty [43] and
Catté, Dibos and Koeppfler [14]. Consider the following game: let D be an open
disk in the plane and let M0 be any point in the disk. There are two players with
antagonistic goals: the first player, let us call him Paul, aims at “pushing” the point
outside the disk whereas the second player, Carol, wants to obstruct him by keeping
the point in the disk. The rules of the game, at each step, are the following:

1. Paul chooses any direction. More precisely, he chooses a line passing through
M0.

2. Carol chooses a sense. She put a new point M1 on the line at a fixed distance
ε of M0 in the chosen sense.

An so on. This gives rise to a sequence M0, M1, M2, · · · of points of the plane (see
Figure 5).

The questions are: who is the winner? Does Carol keep Mn in the disk for all
n or, on the contrary, could Paul be sure to push Mn outside the disk after a finite
number of steps?
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Figure 5: Example of the first steps of a game.

The answer is that it is possible to exit the disk in a finite number of steps. The
strategy is clear: Paul must not give any choice to Carol: he has to choose at every
step a line which is orthogonal to the radius of the disk (see Figure 6).

Now, what is the link with the mean curvature? It becomes clear when intro-
ducing the sets Eε,i, i = 1, 2, · · · defined as follows: if M ∈ Eε,i, then it is possible to
exit the disk in exactly i steps. These sets are nonempty and are annulus (see Figure
7). Introducing an auxiliary time (step 1 at time 0, step 2 at time τε, · · · , step n at
time (n− 1)τε, · · · with τε = ε2/2) and letting ε go to 0, we obtain that the sets Eε,i

converge to the evolution by mean curvature Γt of the disk. One can generalize this
game replacing the disk by any convex set of the plane. The conclusion still holds.
We refer to [43] for details and proofs.

3 The need of a generalized motion

Until now, we supposed that all the evolutions were smooth. But, evolution by mean
curvature, even when starting with a smooth initial front Γ0, faces the developpment
of singularities. A trivial example is the case of spheres (see Figure 2): spheres
remain spheres and they shrink to a point after a finite time t∗. At t∗, a singularity
occurs. There are more interesting examples of course: see Figure 8 for an example
and [25, 49, 35, 2, 30] for details.

A second question related to the previous issue is: how to define the evolution of
a nonsmooth initial front Γ0? Solving these problems is interesting with respect to
applications. In image processing, for instance, mean curvature is used to regularize
the image and the initial image Γ0 has poor regularity. To illustrate such an issue,
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Figure 6: Example of an optimal strategy.

what could be the mean curvature evolution of the polygon and the “eight” of Figure
9?

Both issues imply to be able to define a notion of generalized evolution by mean
curvature in order to deal with nonsmooth hypersurfaces. Different approaches
have been proposed: level-set approach of course but not only. There are another
notions of generalized solutions. Brakke [11] constructed generalized evolutions using
geometrical measure theory, there are the barrier solutions of De Giorgi (see [20] and
[38]) and generalized motion by mean curvature can also be obtained as limits of
reaction-diffusion equations (see [12], [15], [21]).

In this talk, we will focus on the level-set approach.

4 Level-set approach and viscosity solutions

Level-set approach is extensively studied in front propagation. For the mean curva-
ture flow, this method was introduced for numerical purposes by Osher and Sethian
[46]. Rigorous justifications of this approach are due, independently, to Chen, Giga
and Goto [16] and Evans and Spruck [25, 26, 27, 28]. Their proofs are based on
the notion of viscosity solutions which were introduced by Crandall and Lions [19]
and then extensively studied (see Crandall, Ishii and Lions [18] and the references
therein). After these pioneering works, many mathematicians developed the subject.
Among them, we can quote for instance Barles, Soner and Souganidis [8], Soner [48],
Souganidis [51, 52], Ishii and Souganidis [41], Ohnuma and Sato [45], Goto [34], Ishii
[40], Barles, Biton and Ley [5], Giga, Ishimura and Kohsaka [33] and many others.
We refer to Giga [31] for a complete bibliography, details and proofs of what follows.

The idea of the level-set approach is to define a generalized evolution (Γt)t≥0 of
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Figure 7: Eε,i = {M such that it is possible to exit in i steps}.

Figure 8: Evolution of a smooth hypersurface leading to the formation of singulari-
ties in R

3.

an initial front Γ0 ∈ R
N by representing Γt, for all t ≥ 0, as the zero level-set of an

auxiliary function v : R
N × [0, +∞) → R, precisely,

Γt = {x ∈ R
N : v(x, t) = 0} for all t ≥ 0.

Then, at least formally, the function v has to satisfy the mean curvature equation

∂v

∂t
− ∆v +

〈D2vDv, Dv〉

|Dv|2
= 0 on

⋃

t≥0

Γt × {t}. (2)

Note that this equation can also be written

∂v

∂t
− |Dv| div

(

Dv

|Dv|

)

= 0

or

∂v

∂t
− trace(

(

IdRN −
Dv ⊗ Dv

|Dv|2

)

D2v) = 0.

Let us describe more precisely the level-set approach. The given data is the
initial front Γ0 ⊂ R

N which is supposed to be the boundary of an open set Ω0 ⊂ R
N



Figure 9: What are the evolutions of these “singular” hypersurfaces of R
2?

(note that no more regularity is assumed on Γ0; in particular Γ0 can be the sets of
Figure 9).

1. Consider the mean curvature equation (2) (on the whole space and not only
on the front)







∂v

∂t
− ∆v +

〈D2vDv, Dv〉

|Dv|2
= 0 in R

N × (0, +∞),

v(·, 0) = v0 in R
N .

(3)

where v0 : R
N → R is any uniformly continuous (UC in short) function such

that

{v0 = 0} = Γ0, {v0 > 0} = Ω0 and {v0 < 0} = R
N\(Γ0 ∪ Ω0) (4)

(take for instance the signed distance to Γ0 which is positive in Ω0).

2. Solve (3) with viscosity solutions using

Theorem 4.1 ([16, 25, 18]) For any UC v0 there exists a unique UC viscosity
solution v of (3).

3. Define

Γt := {v(·, t) = 0} for all t ≥ 0

and use the fundamental theorem of the level-set approach

Theorem 4.2 ([16, 25]) The generalized evolution by mean curvature (Γt)t≥0

of the couple (Γ0, Ω0) is well-defined in the sense that Γt does not depend on
the choice of the UC function v0 but only on the initial data (Γ0, Ω0).

It means that, when replacing v0 by another function ṽ0 satisfying (4), the
solution v can change but not its zero level-set!



Comparing to other approaches of generalized evolutions, there are advantages
and disadvantages. Let us start with disadvantages. The generalized evolution is
defined as the zero level-set of the solution v of (3) which is merely continuous.
In particular, Γt is not a smooth hypersurface in general, it has poor regularity.
Sometimes, Γt is even a “fat set”, see the fattening phenomenon in [8] and Figures
11, 12. Such a fattening phenomenon can be seen as a nonuniqueness of the evolution
(see for instance Corollary 5.5).

Fortunately, this approach has a lot of advantages: at first, it can be computed
numerically (see Sethian [47] and the references theirein). Secondly, it is defined for
all times, even when starting with a front not regular enough and/or past singu-
larities. Finally, the generalized evolution fits with the classical one of differential
geometry as long as the latter exists (for links between the different notions of evo-
lutions, see [24, 37, 28]).

Let us turn to some examples of generalized evolutions by mean curvature ob-
tained with the level-set approach. Most of the ones we present appear in the papers
mentioned above (especially [25, 48, 39]) and we refer to them for further details.
At first, for spheres, we obtain the classical evolution and Γt = ∅ for t greater than
the extinction time. Evolution of every compact convex body of R

N is well-defined,
even if the convex set is nonsmooth, and they shrink into a point. If everything is
smooth, we get the classical evolution. The generalized evolution of the smooth set
Γ0 of Figure 8 is represented in Figure 10: the evolution coincides with the classical
one until singularities occur and is defined in an expected way past the singulari-
ties. The evolution of the polygon of Figure 9 is well-defined too and we obtain the

Figure 10: Generalized evolution using level-set approach for the set of Figure 8.

expected evolution: there is an immediate regularization effect and Γt shrinks into
a point in finite time. As announced, there are cases of fattening. In Figures 11 and
12, we give two examples of sets Γ0 which fatten instantaneously.

Figure 11: Instantaneous fattening of the “eight”.



Figure 12: Instantaneous fattening of the union of two asymptotic graphs.

The question whether an initial hypersurface (smooth or not) fattens is a difficult
question. We refer to [8] and [9] for some discussions. In the next section, we focus
on the graph case: can a graph evolving by mean curvature fatten?

5 An example of application: uniqueness results

for quasilinear pde’s

The fattening of a graph evolving by mean curvature is an important issue since it is
related to the uniqueness of the solution of the mean curvature equation for graphs.
It was the subject of the series of works [6, 5, 7, 4, 10, 9]. The motivation comes
from the following theorem:

Theorem 5.1 (Ecker and Huisken [22, 23]) If u0 : R
N → R is locally Lipschitz

continuous then






∂u

∂t
− ∆u +

〈D2uDu, Du〉

1 + |Du|2
= 0 in R

N × (0, +∞),

u(·, 0) = u0 in R
N ,

(5)

admits at least one smooth solution u ∈ C∞(RN × (0, +∞)) ∩ C(RN × [0, +∞)).

This theorem is rather surprising since a locally Lipschitz continuous function can
have an arbitrary growth at infinity (for example u0(x) = exp(exp(exp(|x|2))) is
locally Lipschitz continuous!). The situtation is very different from the case of the
heat equation for instance where one has to impose restriction on the growth to
obtain existence theorems (see John [42]).

The natural question is: is there uniqueness for (5)? ([3])
To our knowledge, the question is open in the whole generality. There are partial

positive answers:

(i) It is true in dimension N = 1 (see Chou and Kwong [17] and [7]);

(ii) It is true in any dimension when imposing some polynomial-type restrictions
on the growth of the initial data u0 (see [4] for details);

(iii) It is true for in any dimension in the radial case, i.e. when u0 is radial (see
[10]);



(iv) It is true in any dimension when the initial data u0 is convex ([5]) or at least
convex at infinity (when u0 is a compactly supported continuous perturbation
of a convex function, [9]). In particular, the uniqueness result is true for
u0(x) = exp(exp(exp(|x|2))).

In the remaining part of this talk, we will describe the convex result (iv) which
relies on a geometrical approach using the level-set approach. This link is based, at
least formally, on the following lemma

Lemma 5.2 ([6]) If u : R
N × [0, +∞) → R is a solution of (5) in R

N × (0, +∞)
with a locally Lipschitz continuous initial data u0, then v : R

N+1 × [0, +∞) → R

defined by v(x, y, t) = y− u(x, t) for every (x, y) ∈ R
N ×R is a continuous viscosity

solution of (3) in R
N+1 × (0, +∞) with initial data v0(x, y) = y − u0(x).

This result means that, if u is a solution of the mean curvature equation for graphs,
then the graph of u (seen as an hypersurface in R

N+1) evolves by mean curvature
(see Figure 13).

v(·, t) > 0

epigraph(u(·, t))n

V = −div(n)

R

x

u(x, t)

graph(u(·, t))

hypograph(u(·, t))

v(·, t) < 0

v(·, t) = 0

R
N

Figure 13: Evolution of a graph by mean curvature and level-set approach (time t
is fixed).

We aim at applying the level-set approach to the graph of u. Thus, we set

Γ0 := graph(u0) = {(x, y) ∈ R
N+1 : y = u0(x)}

and Ω0 := epigraph(u0) = {(x, y) ∈ R
N+1 : y > u0(x)}. (6)

Noticing that v0 satisfies (4), a question arises: is v the solution of (3) with initial
data v0? We know that v is a solution but the uniqueness part of Theorem 4.1 holds
only in the class of UC and v0 is UC if and only if so is u0. In the same way, Γt is
defined as the level-set of the solution of (3) by Theorem 4.2 and is independent of
v0 if v0 is UC. The extension of these theorem to the class of continuous functions
is an open problem. This is the main difficulty which is directly related (via some
changes of functions) to the original question of uniqueness for (5). Therefore, level-
set approach does not apply directly using v0.

Nevertheless, using a UC function v0 satisfying (6), we have some results which
are proved in [5]. At first, we know that the graphs of all solutions of (5) are
contained in the generalized evolution of graph(u0) (see Figure 14).



Theorem 5.3 Let u0 ∈ C(RN ) and set Γ0 = graph(u0). If u is a solution of (5)
with initial data u0, then, for all t ≥ 0, we have graph(u(·, t)) ⊂ Γt, where Γt is the
generalized evolution by mean curvature of Γ0 obtained by the level-set approach.

Γ0 = graph(u0)
}

Γt

graph(u+(·, t))

graph(u−(·, t))

graph(u(·, t))

R
N

R
N

R R

Figure 14: Evolution by mean curvature of a graph which fattens a time t.

The second result deals with the structure of the front. As above, let u0 ∈ C(RN)
and set Γ0 = graph(u0). Consider any UC function v0 satisfying (6) and let v be the
unique UC solution of (3). Define the functions

u+(x, t) = sup{y ∈ R : v(x, y, t) ≤ 0} and u−(x, t) = inf{y ∈ R : v(x, y, t) ≥ 0}.

The functions u+ and u− are respectively the “upper-boundary” and the “lower-
boundary” of the generalized evolution by mean curvature Γt of Γ0 (see Figure 14).

Theorem 5.4 The functions u+, u− ∈ C∞(RN × (0, +∞)) ∩ C(RN × [0, +∞)).
Moreover u+ is the maximal solution of (5) and u− is the minimal solution of (5).

An immediate consequence of this result is a reformulation of our uniqueness
question for (5).

Corollary 5.5 Let u0 ∈ C(RN) and set Γ0 = graph(u0). Then (5) has a unique
solution with initial data u0 if and only if the generalized evolution Γt of Γ0 does not
fatten.

We conclude with the announced application to the convex case.

Theorem 5.6 If u0 ∈ C(RN) is convex in R
N and Γ0 = graph(u0), then the general-

ized evolution Γt of Γ0 does not fatten. As a consequence, for any convex continuous
data u0, (5) has a unique solution u ∈ C∞(RN × (0, +∞)) ∩ C(RN × [0, +∞)).
Moreover u(·, t) is convex in R

N for all t ≥ 0.

Sketch of proof. Let v0(x, y) = ds((x, y), Γ0) where ds(·, Γ0) : R
N+1 → R is the

signed distance to the graph of u0

ds((x, y), Γ0) =

{

inf{|(x′, y′) − (x, y)| : y′ = u0(x
′)} if y ≥ u0(x),

−inf{|(x′, y′) − (x, y)| : y′ = u0(x
′)} if y ≤ u0(x).



Since u0 is convex, ds(·, Γ0) is a UC concave function in R
N . Using a preservation of

concavity theorem of Giga, Goto, Ishii and Sato [32], we obtain that v(·, t) is convex
in R

N+1 for all t ≥ 0, where v is the unique UC of (3) with initial data v0. But
Γt = {v(·, t) = 0} is the zero level-set of a nonconstant concave function. It follows
that Γt has empty interior. �

Acknowledgment. I would like to thank C. Imbert and E. Chasseigne for their
comments on the first version of this paper.
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