Projects, Conferences (recent)
Stage MathC2+ à l'INSA Rennes pour les élèves de 2nde: 17-21 juin 2024
Programme -
Plan du campus INSA
Membre de l'ANR COSS
COntrol on Stratified Structures, 2023-2026
(Agence Nationale de la Recherche ANR-22-CE40-0010)
Mois de l'optimisation 2020 à Rennes, 3, 10, 17, 24 novembre 2020.
4 conférences grand public
accessibles à partir du niveau lycée pour faire découvrir le monde de l'optimisation.
Les enregistrements seront disponibles en ligne sur le site.
Site internet
- Affiche
- Plaquette de présentation
MOA19: Journées annuelles du GdR MOA,
INSA Rennes, 15-18 octobre 2019.
Programme
JJEDP19: Journées Jeunes EDPistes 2019,
INSA Rennes, 20-22 mars 2019.
Affiche de la conférence
Domaines de recherche /Research topics
Équations aux dérivées partielles
non-linéaires /Nonlinear partial differential equations
Solutions de viscosité /Viscosity solutions
Équations de Hamilton-Jacobi, contrôle optimal, jeux à champ moyen /Hamilton-Jacobi equations, Optimal control, Mean Field Games
Équations géométriques, mouvement par courbure moyenne, dislocations
/Geometric equations, mean curvature motion, dislocations
Équations non-locales intégro-différentielles
/Nonlocal PDE, integro-differential operators
Comportement asymptotique pour Hamilton-Jacobi
/Large time behavior of solutions to HJ equations
Analyse convexe et optimisation /Convex analysis and Optimization
Publications
Preprints
[41]
Guy Barles, Olivier Ley, Erwin Topp:
Nonlocal Hamilton-Jacobi equations on a network with Kirchhoff type conditions.
Preprint, 2024.
(pdf)
(on HAL-server).
[40]
Adina Ciomaga, Minh Le, Olivier Ley, Erwin Topp:
Comparison principle for general nonlocal Hamilton-Jacobi equations with superlinear gradient.
Preprint, 2024.
(pdf)
(on HAL-server).
[39]
Aris Daniilidis, Mounir Haddou, Tri Minh Le, Olivier Ley:
Solving Nonlinear Absolute Value Equations.
Preprint, 2024.
(pdf)
(on HAL-server).
[38]
Jules Berry, Olivier Ley, Francisco Silva:
Approximation and perturbations of stable solutions to a stationary mean field game system.
Preprint, 2024.
(pdf)
(on HAL-server).
Parues ou à paraître
[37]
Aris Daniilidis, Mounir Haddou, Olivier Ley:
A convex function satisfying the Lojasiewicz inequality but failing the gradient conjecture both
at zero and infinity
Bull. Lond. Math. Soc. 54 (2), 590-608, 2022.
(pdf)
(on HAL-server).
[36]
Olivier Ley, Erwin Topp, Miguel Yangari:
Some results for the large time behavior of Hamilton-Jacobi Equations with Caputo Time Derivative.
Discrete Contin. Dyn. Syst. Ser. A. 41 (8), 3555-3577, 2021.
(pdf)
(on HAL-server).
[35]
Yves Achdou, Manh-Khang Dao, Olivier Ley, Nicoletta Tchou :
Finite Horizon Mean Field Games on Networks.
Calc. Var. Partial Differential Equations 59, No 157, 34 pp, 2020.
(pdf)
(on HAL-server).
[34]
Yves Achdou, Manh-Khang Dao, Olivier Ley, Nicoletta Tchou :
A Class of Infinite Horizon Mean Field Games on Networks.
Netw. Heterog. Media. 14, 537-566, 2019.
(pdf)
(on HAL-server).
[33]
Guy Barles, Olivier Ley, Thi-Tuyen Nguyen, Thanh Viet Phan :
Large time Behavior of unbounded solutions of first-order
Hamilton-Jacobi in R^N.
Asymptotic Anal. 112, 1-22, 2019.
(pdf)
(on HAL-server).
[32]
Emmanuel Chasseigne, Olivier Ley, Thi-Tuyen Nguyen :
A priori Lipschitz estimates for solutions of local and nonlocal Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator.
Rev. Mat. Iberoam. 35, 1415-1449, 2019.
(pdf)
(on HAL-server).
[31]
Aris Daniilidis, Mounir Haddou, Erwan Le Gruyer, Olivier Ley :
Explicit formulas for C1,1 Glaeser-Whitney extensions
of 1-fields in Hilbert spaces.
Proc. Amer. Math. Soc. 146, 4487-4495, 2018.
(pdf)
(on HAL-server).
[30]
Olivier Ley, Vinh Duc Nguyen :
Lipschitz regularity results for nonlinear strictly elliptic equations and applications
J. Differential Equations 263, 4324-4354, 2017.
(pdf)
(on HAL-server).
[29]
Guy Barles, Olivier Ley, Erwin Topp:
Lipschitz regularity for integro-differential equations with coercive Hamiltonians
and applications to large time behavior
Nonlinearity 30, 703-734, 2017.
(pdf)
(on HAL-server).
[28]
Giulio Galise, Shigeaki Koike, Olivier Ley, Antonio Vitolo :
Entire solutions of fully nonlinear elliptic equations with a
superlinear gradient term
J. Math. Anal. Appl. 441, 194-210, 2016.
(pdf)
(on HAL-server).
[27]
Olivier Ley, Vinh Duc Nguyen :
Gradient bounds for nonlinear degenerate parabolic equations
and application to large time behavior of systems
Nonlinear Analysis 130, 76-101, 2016.
(pdf)
(on HAL-server).
[26]
Guy Barles, Shigeaki Koike, Olivier Ley, Erwin Topp :
Regularity Results and Large Time Behavior for Integro-Differential Equations with Coercive Hamiltonians
Calc. Var. Partial Differential Equations 54, 539-572, 2015.
(pdf)
(on HAL-server).
[25]
Olivier Ley, Vinh Duc Nguyen :
Large time behavior for some
nonlinear degenerate parabolic equations
J. Math. Pures Appl. 102, 293-314, 2014.
(pdf)
(on HAL-server).
[24]
Fabio Camilli, Olivier Ley, Paola Loreti, Vinh Duc Nguyen :
Large time behavior of weakly coupled systems of first-order
Hamilton-Jacobi equations
NoDEA Nonlinear Differential Equations Appl. 19, 719-749, 2012.
(pdf)
(on HAL-server).
[23]
Guy Barles, Olivier Ley et Hiroyoshi Mitake :
Short time uniqueness results for solutions of nonlocal
and non-monotone geometric equations
Math. Ann. 352, 409-451, 2012.
(pdf)
(on HAL-server).
[22]
Pierre Cardaliaguet, Olivier Ley et Aurélien Monteillet :
Viscosity solutions for a polymer crystal growth model.
Indiana Univ. Math. J. 60, 895-936, 2011.
(pdf)
(on HAL-server).
[21]
Shigeaki Koike and Olivier Ley :
Comparison principle for unbounded viscosity solutions of
degenerate elliptic PDEs with gradient superlinear terms
J. Math. Anal. Appl. 381, 110-120, 2011.
(pdf)
(on HAL-server).
[20]
Aris Daniilidis, Olivier Ley and Stéphane Sabourau :
Asymptotic behaviour of self-contracted planar curves
and gradient orbits of convex functions.
J. Math. Pures Appl. 94, 183-199, 2010.
(pdf)
(on HAL-server).
[19]
Francesca Da Lio et Olivier Ley :
Uniqueness results for convex Hamilton-Jacobi equations
under p>1 growth conditions on data.
Appl. Math. Optim. 63(3), 309-339, 2011.
(pdf)
(on HAL-server).
[18]
Jérôme Bolte, Aris Daniilidis, Olivier Ley and Laurent Mazet :
Characterizations of Lojasiewicz inequalities:
Subgradient flows, talweg, convexity.
Trans. Amer. Math. Soc. 362 (6), 3319-3363, 2010.
(pdf)
(on HAL-server).
[17]
Guy Barles, Pierre Cardaliaguet, Olivier Ley et Aurélien
Monteillet :
Existence of weak solutions for general nonlocal and nonlinear second-order parabolic equations
Nonlinear Analysis. Theory, Methods and Applications,
71 (7-8), 2801-2810, 2009.
(pdf)
(on HAL-server).
[16']
Olivier Ley :
Nonlocal Hamilton-Jacobi equations related to dislocation
dynamics and a FitzHugh-Nagumo system.
Proceedings of the
``Viscosity solutions of differential equations and
related topics'' (Kyoto 2008) RIMS Kokyuroku 1651, 2009.
(pdf)
(on HAL-server).
[16]
Guy Barles, Pierre Cardaliaguet, Olivier Ley et Aurélien Monteillet :
Uniqueness Results for Nonlocal Hamilton-Jacobi Equations.
Journal of Functional Analysis 257 (5), 1261-1287, 2009.
(pdf)
(on HAL-server).
[HDR]
Olivier Ley :
Évolution de fronts avec vitesse
non-locale et \'equations de Hamilton-Jacobi.
Habilitation à Diriger des Recherches, Université
de Tours, 8 décembre 2008.
(pdf)
[15]
Fabio Camilli, Olivier Ley, Paola Loreti :
Homogenization of monotone systems of Hamilton-Jacobi equations
ESAIM: Control, Optim. Calc. Var. 16, 58-76, 2010.
(pdf)
(on HAL-server).
[14]
Olivier Ley :
Weak solutions for dislocation type equations
Gakuto International Series, Mathematical Sciences and
Applications 30, 117-132, 2008.
(pdf)
(on HAL-server).
[13]
Guy Barles, Pierre Cardaliaguet, Olivier Ley et Régis Monneau :
Global existence results and uniqueness
for dislocation equations.
SIAM J. Math. Anal. 40, 44-69, 2008
(pdf)
(on HAL-server).
[12]
Samuel Biton, Pierre Cardaliaguet et Olivier Ley :
Non fattening condition for the generalized evolution by
mean curvature and applications.
Interfaces Free Bound. 10, 1-14, 2008.
(Résumé)-
(pdf)
[11]
Pierre Cardaliaguet et Olivier Ley :
On the energy of a flow arising in shape optimization.
Interfaces Free Bound. 10, 221-241, 2008.
(pdf)
(on HAL-server).
[10']
Olivier Ley :
Geometric flows and Bernoulli problems.
Proceedings of the 29th Sapporo Symposium on PDE,
Hokkaido University Technical Report Series in Mathematics, 84 : 1-8, 2004.
(pdf)
[10]
Pierre Cardaliaguet et Olivier Ley :
Some flows in shape optimization.
Arch. Rational Mech. Anal. 183 (1), 21-58, 2007.
(pdf)
(on HAL-server).
[9]
Francesca Da Lio et Olivier Ley :
Uniqueness Results for Second
Order Bellman-Isaacs Equations under
Quadratic Growth Assumptions and Applications.
SIAM J. Control Optim., 45 (1) : 74-106, 2006.
(pdf)
(on HAL-server).
[8]
Guy Barles et Olivier Ley :
Nonlocal first-order Hamilton-Jacobi equations modelling dislocations dynamics.
Comm. Partial Differential Equations, 31 (8) : 1191-1208, 2006.
(pdf)
(on HAL-server).
[proc1]
Olivier Ley :
Motion by mean curvature and level-set approach.
Proceedings of a talk given at Muroran Institute of Technology (Japan),
July 2004.
(pdf)
[7]
Samuel Biton, Emmanuel Chasseigne et Olivier Ley :
Uniqueness without growth condition for the mean curvature equation
with radial initial data.
Comm. Partial Differential Equations, 28 (9-10) : 1503-1526, 2003.
(Résumé)-
(pdf)
[6]
Guy Barles, Samuel Biton,
Mariane Bourgoing et Olivier Ley :
Uniqueness results for quasilinear parabolic equations through
viscosity solutions' methods.
Calc. Var. Partial Differential Equations 18 : 159-179, 2003.
(ps)
[5]
Guy Barles, Samuel Biton et Olivier
Ley : Uniqueness for parabolic equations without growth condition
and applications to the mean curvature flow in R^2.
J. Differential Equations 187 : 456-472, 2003.
(ps)
[4]
Guy Barles, Samuel Biton et Olivier
Ley : A Geometrical Approach to the Study of Unbounded Solutions
of Quasilinear Parabolic Equations.
Arch. Rational Mech. Anal. 162 (4) : 287-325, 2002.
(Résumé)-
(pdf)
[3]
Guy Barles, Samuel Biton et Olivier
Ley : Quelques résultats d'unicité pour l'équation
de mouvement par courbure moyenne dans R^N.
ESAIM: Proceedings, Actes du 32eme Congrès d'Analyse Numérique :
Canum 2000, 8, 2002.
(Résumé)-
(pdf)
[2]
Olivier Ley :
A counter-example to the characterization of the discontinuous
value function of control problems with reflection.
C. R. Acad. Sci. Paris, Ser. I, 335 : 469-473, 2002.
(Résumé)-
(pdf)
[THESE]
Olivier Ley :
Thèse de doctorat,
Université de Tours, 2001.
(Résumé)-
(Abstract)-
(ps.gz)
[1]
Olivier Ley :
Lower-bound gradient estimates for first-order Hamilton-Jacobi
equations and applications to the regularity of propagating fronts.
Adv. Differential Equations, 6 (5) : 547-576, 2001.
(Résumé)-
(pdf)-(ps)
Projects, conferences (former)
Local coordinator of
ANR MFG
Mean Field Games
(Agence Nationale de la Recherche ANR-16-CE40-0015-01 2016-2020)
Ancien membre élu du CNU26 (2015-2019)
Conference HJ2016
Hamilton-Jacobi Equations: new trends and applications,
Closing conference of the project ANR HJnet,
Rennes, May 30-June 3 2016.
Project coordinator of
ANR HJnet
Hamilton-Jacobi equations on heterogeneous structures and networks
ANR-12-BS01-0008-01 (2013-2016)
ANR Weak KAM
Beyond Hamilton-Jacobi
ANR-12-BS01-0020 (2013-2016)
Conference NetCo 2014, New trends in optimal control
June 23-27 2014, Tours
Ancien membre du conseil scientifique de l'INSMI du CNRS:
Rapport de prospective (Mandat 2010-2014)
L'ANR
KAM faible "Hamilton-Jacobi et théorie KAM faible" (2008-2011).
L'ANR
MICA "Mouvements d'Interfaces, Calcul et Applications" (2006-2009).
Rapport/Report de l'ACI
"Mouvements d'interfaces avec termes non locaux" (2003-2006).
Document modifié par O.L. le 20/11/2024